Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Jul;2(7):1126–1135. doi: 10.1002/pro.5560020707

Binding of ferredoxin to ferredoxin:NADP+ oxidoreductase: the role of carboxyl groups, electrostatic surface potential, and molecular dipole moment.

A R De Pascalis 1, I Jelesarov 1, F Ackermann 1, W H Koppenol 1, M Hirasawa 1, D B Knaff 1, H R Bosshard 1
PMCID: PMC2142418  PMID: 8102922

Abstract

The small, soluble, (2Fe-2S)-containing protein ferredoxin (Fd) mediates electron transfer from the chloroplast photosystem I to ferredoxin: NADP+ oxidoreductase (FNR), a flavoenzyme located on the stromal side of the thylakoid membrane. Ferredoxin and FNR form a 1:1 complex, which is stabilized by electrostatic interactions between acidic residues of Fd and basic residues of FNR. We have used differential chemical modification of Fd to locate aspartic and glutamic acid residues at the intermolecular interface of the Fd:FNR complex (both proteins from spinach). Carboxyl groups of free and FNR-bound Fd were amidated with carbodiimide/2-aminoethane sulfonic acid (taurine). The differential reactivity of carboxyl groups was assessed by double isotope labeling. Residues protected in the Fd:FNR complex were D-26, E-29, E-30, D-34, D-65, and D-66. The protected residues belong to two domains of negative electrostatic surface potential on either side of the iron-sulfur cluster. The negative end of the molecular dipole moment vector of Fd (377 Debye) is close to the iron-sulfur cluster, in the center of the area demarcated by the protected carboxyl groups. The molecular dipole moment and the asymmetric surface potential may help to orient Fd in the reaction with FNR. In support, we find complementary domains of positive electrostatic potential on either side of the FAD redox center of FNR. The results allow a binding model for the Fd:FNR complex to be constructed.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batie C. J., Kamin H. The relation of pH and oxidation-reduction potential to the association state of the ferredoxin . ferredoxin:NADP+ reductase complex. J Biol Chem. 1981 Aug 10;256(15):7756–7763. [PubMed] [Google Scholar]
  2. Bechtold R., Bosshard H. R. Structure of an electron transfer complex. II. Chemical modification of carboxyl groups of cytochrome c peroxidase in presence and absence of cytochrome c. J Biol Chem. 1985 Apr 25;260(8):5191–5200. [PubMed] [Google Scholar]
  3. Bosshard H. R. Mapping of contact areas in protein-nucleic acid and protein-protein complexes by differential chemical modification. Methods Biochem Anal. 1979;25:273–301. doi: 10.1002/9780470110454.ch4. [DOI] [PubMed] [Google Scholar]
  4. Burch A. M., Rigby S. E., Funk W. D., MacGillivray R. T., Mauk M. R., Mauk A. G., Moore G. R. NMR characterization of surface interactions in the cytochrome b5-cytochrome c complex. Science. 1990 Feb 16;247(4944):831–833. doi: 10.1126/science.2154849. [DOI] [PubMed] [Google Scholar]
  5. Burnens A., Demotz S., Corradin G., Binz H., Bosshard H. R. Epitope mapping by chemical modification of free and antibody-bound protein antigen. Science. 1987 Feb 13;235(4790):780–783. doi: 10.1126/science.2433768. [DOI] [PubMed] [Google Scholar]
  6. Chang J. Y. N-terminal sequence analysis of polypeptide at the picomole level. Biochem J. 1981 Dec 1;199(3):557–564. doi: 10.1042/bj1990557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Correll C. C., Batie C. J., Ballou D. P., Ludwig M. L. Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science. 1992 Dec 4;258(5088):1604–1610. doi: 10.1126/science.1280857. [DOI] [PubMed] [Google Scholar]
  8. Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. 1988;4(1):31–47. doi: 10.1002/prot.340040106. [DOI] [PubMed] [Google Scholar]
  9. Davis D. J. Tryptophan fluorescence studies of ferredoxin:NADP reductase indicate the presence of tryptophan in or near the ferredoxin binding site. Arch Biochem Biophys. 1990 Jan;276(1):1–5. doi: 10.1016/0003-9861(90)90001-f. [DOI] [PubMed] [Google Scholar]
  10. Forti G., Melandri B. A., San Pietro A. Studies on the photoreduction of ferredoxin and the ferredoxin-NADP reductase flavoprotein by chlorplasts fragments: effect of pyrophosphate. Arch Biochem Biophys. 1970 Sep;140(1):107–112. doi: 10.1016/0003-9861(70)90014-7. [DOI] [PubMed] [Google Scholar]
  11. Foust G. P., Mayhew S. G., Massey V. Complex formation between ferredoxin triphosphopyridine nucleotide reductase and electron transfer proteins. J Biol Chem. 1969 Feb 10;244(3):964–970. [PubMed] [Google Scholar]
  12. Gilson M. K., Honig B. H. Energetics of charge-charge interactions in proteins. Proteins. 1988;3(1):32–52. doi: 10.1002/prot.340030104. [DOI] [PubMed] [Google Scholar]
  13. Gilson M. K., Honig B. H. The dielectric constant of a folded protein. Biopolymers. 1986 Nov;25(11):2097–2119. doi: 10.1002/bip.360251106. [DOI] [PubMed] [Google Scholar]
  14. Hitchcock-DeGregori S. E., Lewis S. F., Chou T. M. Tropomyosin lysine reactivities and relationship to coiled-coil structure. Biochemistry. 1985 Jun 18;24(13):3305–3314. doi: 10.1021/bi00334a035. [DOI] [PubMed] [Google Scholar]
  15. Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
  16. Knaff D. B., Hirasawa M. Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta. 1991 Jan 22;1056(2):93–125. doi: 10.1016/s0005-2728(05)80277-4. [DOI] [PubMed] [Google Scholar]
  17. Koppenol W. H., Margoliash E. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. J Biol Chem. 1982 Apr 25;257(8):4426–4437. [PubMed] [Google Scholar]
  18. Koppenol W. H., Rush J. D., Mills J. D., Margoliash E. The dipole moment of cytochrome c. Mol Biol Evol. 1991 Jul;8(4):545–558. doi: 10.1093/oxfordjournals.molbev.a040659. [DOI] [PubMed] [Google Scholar]
  19. Medina M., Mendez E., Gomez-Moreno C. Identification of arginyl residues involved in the binding of ferredoxin-NADP+ reductase from Anabaena sp. PCC 7119 to its substrates. Arch Biochem Biophys. 1992 Dec;299(2):281–286. doi: 10.1016/0003-9861(92)90276-3. [DOI] [PubMed] [Google Scholar]
  20. Medina M., Mendez E., Gomez-Moreno C. Lysine residues on ferredoxin-NADP+ reductase from Anabaena sp. PCC 7119 involved in substrate binding. FEBS Lett. 1992 Feb 17;298(1):25–28. doi: 10.1016/0014-5793(92)80014-8. [DOI] [PubMed] [Google Scholar]
  21. Northrup S. H., Boles J. O., Reynolds J. C. Brownian dynamics of cytochrome c and cytochrome c peroxidase association. Science. 1988 Jul 1;241(4861):67–70. doi: 10.1126/science.2838904. [DOI] [PubMed] [Google Scholar]
  22. Oomen R. P., Kaplan H. Competitive labeling as an approach to defining the binding surfaces of proteins: binding of monomeric insulin to lipid bilayers. Biochemistry. 1987 Jan 13;26(1):303–308. doi: 10.1021/bi00375a042. [DOI] [PubMed] [Google Scholar]
  23. Pelletier H., Kraut J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science. 1992 Dec 11;258(5089):1748–1755. doi: 10.1126/science.1334573. [DOI] [PubMed] [Google Scholar]
  24. Pettigrew G. Mapping an electron transfer site on cytochrome c. FEBS Lett. 1978 Feb 1;86(1):14–16. doi: 10.1016/0014-5793(78)80087-8. [DOI] [PubMed] [Google Scholar]
  25. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  26. Rieder R., Bosshard H. R. Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc1, and cytochrome c1. Differential acetylation of lysyl residues in free and complexed cytochrome c. J Biol Chem. 1980 May 25;255(10):4732–4739. [PubMed] [Google Scholar]
  27. Rush J. D., Levine F., Koppenol W. H. The electron-transfer site of spinach plastocyanin. Biochemistry. 1988 Aug 9;27(16):5876–5884. doi: 10.1021/bi00416a009. [DOI] [PubMed] [Google Scholar]
  28. Rypniewski W. R., Breiter D. R., Benning M. M., Wesenberg G., Oh B. H., Markley J. L., Rayment I., Holden H. M. Crystallization and structure determination to 2.5-A resolution of the oxidized [2Fe-2S] ferredoxin isolated from Anabaena 7120. Biochemistry. 1991 Apr 30;30(17):4126–4131. doi: 10.1021/bi00231a003. [DOI] [PubMed] [Google Scholar]
  29. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  30. Staros J. V., Wright R. W., Swingle D. M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem. 1986 Jul;156(1):220–222. doi: 10.1016/0003-2697(86)90176-4. [DOI] [PubMed] [Google Scholar]
  31. Tsukihara T., Fukuyama K., Mizushima M., Harioka T., Kusunoki M., Katsube Y., Hase T., Matsubara H. Structure of the [2Fe-2S] ferredoxin I from the blue-green alga Aphanothece sacrum at 2.2 A resolution. J Mol Biol. 1990 Nov 20;216(2):399–410. doi: 10.1016/S0022-2836(05)80330-4. [DOI] [PubMed] [Google Scholar]
  32. Tsukihira T., Fukuyama K., Nakamura M., Katsube Y., Tanaka N., Kakudo M., Wada K., Hase T., Matsubara H. X-ray analysis of a [2Fe-2S] ferrodoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5 A resolution. J Biochem. 1981 Dec;90(6):1763–1773. doi: 10.1093/oxfordjournals.jbchem.a133654. [DOI] [PubMed] [Google Scholar]
  33. Vieira B. J., Colvert K. K., Davis D. J. Chemical modification and cross-linking as probes of regions on ferredoxin involved in its interaction with ferredoxin: NADP reductase. Biochim Biophys Acta. 1986 Aug 13;851(1):109–122. doi: 10.1016/0005-2728(86)90254-9. [DOI] [PubMed] [Google Scholar]
  34. Vieira B. J., Davis D. J. Interaction of ferredoxin with ferredoxin:NADP reductase: effects of chemical modification of ferredoxin. Arch Biochem Biophys. 1986 May 15;247(1):140–146. doi: 10.1016/0003-9861(86)90542-4. [DOI] [PubMed] [Google Scholar]
  35. Walker M. C., Pueyo J. J., Navarro J. A., Gómez-Moreno C., Tollin G. Laser flash photolysis studies of the kinetics of reduction of ferredoxins and ferredoxin-NADP+ reductases from Anabaena PCC 7119 and spinach: electrostatic effects on intracomplex electron transfer. Arch Biochem Biophys. 1991 Jun;287(2):351–358. doi: 10.1016/0003-9861(91)90489-6. [DOI] [PubMed] [Google Scholar]
  36. Walls P. H., Sternberg M. J. New algorithm to model protein-protein recognition based on surface complementarity. Applications to antibody-antigen docking. J Mol Biol. 1992 Nov 5;228(1):277–297. doi: 10.1016/0022-2836(92)90506-f. [DOI] [PubMed] [Google Scholar]
  37. Zanetti G., Aliverti A., Curti B. A cross-linked complex between ferredoxin and ferredoxin-NADP+ reductase. J Biol Chem. 1984 May 25;259(10):6153–6157. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES