Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Aug;2(8):1320–1330. doi: 10.1002/pro.5560020815

Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers.

V Baudin 1, J Pagnier 1, L Kiger 1, J Kister 1, O Schaad 1, M T Bihoreau 1, N Lacaze 1, M C Marden 1, S J Edelstein 1, C Poyart 1
PMCID: PMC2142439  PMID: 8401217

Abstract

A seminal difference exists between the two types of chains that constitute the tetrameric hemoglobin in vertebrates. While alpha chains associate weakly into dimers, beta chains self-associate into tightly assembled tetramers. While heterotetramers bind ligands cooperatively with moderate affinity, homotetramers bind ligands with high affinity and without cooperativity. These characteristics lead to the conclusion that the beta 4 tetramer is frozen in a quaternary R-state resembling that of liganded HbA. X-ray diffraction studies of the liganded beta 4 tetramers and molecular modeling calculations revealed several differences relative to the native heterotetramer at the "allosteric" interface (alpha 1 beta 2 in HbA) and possibly at the origin of a large instability of the hypothetical deoxy T-state of the beta 4 tetramer. We have studied natural and artificial Hb mutants at different sites in the beta chains responsible for the T-state conformation in deoxy HbA with the view of restoring a low ligand affinity with heme-heme interaction in homotetramers. Functional studies have been performed for oxygen equilibrium binding and kinetics after flash photolysis of CO for both hetero- and homotetramers. Our conclusion is that the "allosteric" interface is so precisely tailored for maintaining the assembly between alpha beta dimers that any change in the side chains of beta 40 (C6), beta 99 (G1), and beta 101 (G3) involved in the interface results in increased R-state behavior. In the homotetramer, the mutations at these sites lead to the destabilization of the beta 4 hemoglobin and the formation of lower affinity noncooperative monomers.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudin-Chich V., Marden M., Wajcman H. Investigation of the tetramer-dimer equilibrium in haemoglobin solutions by high-performance size-exclusion chromatography on a diol column. J Chromatogr. 1988 Mar 11;437(1):193–201. doi: 10.1016/s0021-9673(00)90382-0. [DOI] [PubMed] [Google Scholar]
  2. Campbell B. F., Chance M. R., Friedman J. M. Linkage of functional and structural heterogeneity in proteins: dynamic hole burning in carboxymyoglobin. Science. 1987 Oct 16;238(4825):373–376. doi: 10.1126/science.3659921. [DOI] [PubMed] [Google Scholar]
  3. Dunn R. C., Simon J. D. Picosecond study of the near infrared absorption band of hemoglobin after photolysis of carbonmonoxyhemoglobin. Biophys J. 1991 Oct;60(4):884–889. doi: 10.1016/S0006-3495(91)82122-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friedman J. M. Structure, dynamics, and reactivity in hemoglobin. Science. 1985 Jun 14;228(4705):1273–1280. doi: 10.1126/science.4001941. [DOI] [PubMed] [Google Scholar]
  5. Kitagawa T. Investigation of higher order structures of proteins by ultraviolet resonance Raman spectroscopy. Prog Biophys Mol Biol. 1992;58(1):1–18. doi: 10.1016/0079-6107(92)90009-u. [DOI] [PubMed] [Google Scholar]
  6. Kurtz A., Bauer C. The oxygen affinity of hemoglobin betaSH chains is concentration dependent. Biochem Biophys Res Commun. 1978 Oct 30;84(4):852–857. doi: 10.1016/0006-291x(78)91662-5. [DOI] [PubMed] [Google Scholar]
  7. Kurtz A., Rollema H. S., Bauer C. Heterotropic interactions in monomeric beta SH chains from human hemoglobin. Arch Biochem Biophys. 1981 Aug;210(1):200–203. doi: 10.1016/0003-9861(81)90180-6. [DOI] [PubMed] [Google Scholar]
  8. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  9. Marden M. C., Kister J., Bohn B., Poyart C. T-state hemoglobin with four ligands bound. Biochemistry. 1988 Mar 8;27(5):1659–1664. doi: 10.1021/bi00405a041. [DOI] [PubMed] [Google Scholar]
  10. Martin J. L., Migus A., Poyart C., Lecarpentier Y., Astier R., Antonetti A. Femtosecond photolysis of CO-ligated protoheme and hemoproteins: appearance of deoxy species with a 350-fsec time constant. Proc Natl Acad Sci U S A. 1983 Jan;80(1):173–177. doi: 10.1073/pnas.80.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moo-Penn W. F., Johnson M. H., Bechtel K. C., Jue D. L., Therrell B. L., Jr, Schmidt R. M. Hemoglobins Austin and Waco: two hemoglobins with substitutions in the alpha 1 beta 2 contact region. Arch Biochem Biophys. 1977 Feb;179(1):86–94. doi: 10.1016/0003-9861(77)90089-3. [DOI] [PubMed] [Google Scholar]
  12. Mrad A., Kister J., Feo C., Poyart C., Kastally R., Blibech R., Galacteros F., Wajcman H. Hemoglobin Athens-Georgia [alpha 2 beta 2 40(C6)Arg----Lys] in association with beta 0-thalassemia in Tunisia. Am J Hematol. 1989 Oct;32(2):117–122. doi: 10.1002/ajh.2830320208. [DOI] [PubMed] [Google Scholar]
  13. Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
  14. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  15. Petrich J. W., Lambry J. C., Kuczera K., Karplus M., Poyart C., Martin J. L. Ligand binding and protein relaxation in heme proteins: a room temperature analysis of NO geminate recombination. Biochemistry. 1991 Apr 23;30(16):3975–3987. doi: 10.1021/bi00230a025. [DOI] [PubMed] [Google Scholar]
  16. Philo J. S., Adams M. L., Schuster T. M. Association-dependent absorption spectra of oxyhemoglobin A and its subunits. J Biol Chem. 1981 Aug 10;256(15):7917–7924. [PubMed] [Google Scholar]
  17. Philo J. S., Lary J. W., Schuster T. M. Quaternary interactions in hemoglobin beta subunit tetramers. Kinetics of ligand binding and self-assembly. J Biol Chem. 1988 Jan 15;263(2):682–689. [PubMed] [Google Scholar]
  18. Sawicki C. A., Gibson Q. H. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J Biol Chem. 1976 Mar 25;251(6):1533–1542. [PubMed] [Google Scholar]
  19. Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
  20. Tainsky M., Edelstein S. J. Enhanced quaternary stability of beta hemoglobin in 2 M-sodium chloride. J Mol Biol. 1973 Apr 25;75(4):735–739. doi: 10.1016/0022-2836(73)90304-5. [DOI] [PubMed] [Google Scholar]
  21. Turci S. M., McDonald M. J. The effect of pH on the rate of dissociation of the oxygenated beta chain tetramer of Hb A. Biochem Biophys Res Commun. 1983 Feb 28;111(1):55–60. doi: 10.1016/s0006-291x(83)80116-8. [DOI] [PubMed] [Google Scholar]
  22. Turner G. J., Galacteros F., Doyle M. L., Hedlund B., Pettigrew D. W., Turner B. W., Smith F. R., Moo-Penn W., Rucknagel D. L., Ackers G. K. Mutagenic dissection of hemoglobin cooperativity: effects of amino acid alteration on subunit assembly of oxy and deoxy tetramers. Proteins. 1992 Nov;14(3):333–350. doi: 10.1002/prot.340140303. [DOI] [PubMed] [Google Scholar]
  23. Zijlstra W. G., Buursma A., Meeuwsen-van der Roest W. P. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem. 1991 Sep;37(9):1633–1638. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES