Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Sep;2(9):1383–1390. doi: 10.1002/pro.5560020903

Conformational instability of the N- and C-terminal lobes of porcine pepsin in neutral and alkaline solutions.

X Lin 1, J A Loy 1, F Sussman 1, J Tang 1
PMCID: PMC2142452  PMID: 8401224

Abstract

Pepsin contains, in a single chain, two conformationally homologous lobes that are thought to have been evolutionarily derived by gene duplication and fusion. We have demonstrated that the individual recombinant lobes are capable of independent folding and reconstitution into a two-chain pepsin or a two-chain pepsinogen (Lin, X., et al., 1992, J. Biol. Chem. 267, 17257-17263). Pepsin spontaneously inactivates in neutral or alkaline solutions. We have shown in this study that the enzymic activity of the alkaline-inactivated pepsin was regenerated by the addition of the recombinant N-terminal lobe but not by the C-terminal lobe. These results indicate that alkaline inactivation of pepsin is due to a selective denaturation of its N-terminal lobe. A complex between recombinant N-terminal lobe of pepsinogen and alkaline-denatured pepsin has been isolated. This complex is structurally similar to a two-chain pepsinogen, but it contains an extension of a denatured pepsin N-terminal lobe. Acidification of the complex is accompanied by a cleavage in the pro region and proteolysis of the denatured N-terminal lobe. The structural components that are responsible for the alkaline instability of the N-terminal lobe are likely to be carboxyl groups with abnormally high pKa values. The electrostatic potentials of 23 net carboxyl groups in the N-terminal domain (as compared to 19 in the C-terminal domain) of pepsin were calculated based on the energetics of interacting charges in the tertiary structure of the domain. The groups most probably causing the alkaline denaturation are Asp11, Asp159, Glu4, Glu13, and Asp118.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad-Zapatero C., Rydel T. J., Erickson J. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Proteins. 1990;8(1):62–81. doi: 10.1002/prot.340080109. [DOI] [PubMed] [Google Scholar]
  2. Cooper J. B., Khan G., Taylor G., Tickle I. J., Blundell T. L. X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. J Mol Biol. 1990 Jul 5;214(1):199–222. doi: 10.1016/0022-2836(90)90156-G. [DOI] [PubMed] [Google Scholar]
  3. Davies D. R. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990;19:189–215. doi: 10.1146/annurev.bb.19.060190.001201. [DOI] [PubMed] [Google Scholar]
  4. Dykes C. W., Kay J. Conversion of pepsinogen into pepsin is not a one-step process. Biochem J. 1976 Jan 1;153(1):141–144. doi: 10.1042/bj1530141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fitzgerald P. M., McKeever B. M., VanMiddlesworth J. F., Springer J. P., Heimbach J. C., Leu C. T., Herber W. K., Dixon R. A., Darke P. L. Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-A resolution. J Biol Chem. 1990 Aug 25;265(24):14209–14219. [PubMed] [Google Scholar]
  6. Fruton J. S. The mechanism of the catalytic action of pepsin and related acid proteinases. Adv Enzymol Relat Areas Mol Biol. 1976;44:1–36. doi: 10.1002/9780470122891.ch1. [DOI] [PubMed] [Google Scholar]
  7. Fusek M., Lin X. L., Tang J. Enzymic properties of thermopsin. J Biol Chem. 1990 Jan 25;265(3):1496–1501. [PubMed] [Google Scholar]
  8. Hartsuck J. A., Koelsch G., Remington S. J. The high-resolution crystal structure of porcine pepsinogen. Proteins. 1992 May;13(1):1–25. doi: 10.1002/prot.340130102. [DOI] [PubMed] [Google Scholar]
  9. Lin X. L., Lin Y. Z., Koelsch G., Gustchina A., Wlodawer A., Tang J. Enzymic activities of two-chain pepsinogen, two-chain pepsin, and the amino-terminal lobe of pepsinogen. J Biol Chem. 1992 Aug 25;267(24):17257–17263. [PubMed] [Google Scholar]
  10. Lin X. L., Wong R. N., Tang J. Synthesis, purification, and active site mutagenesis of recombinant porcine pepsinogen. J Biol Chem. 1989 Mar 15;264(8):4482–4489. [PubMed] [Google Scholar]
  11. Lin Y., Fusek M., Lin X., Hartsuck J. A., Kezdy F. J., Tang J. pH dependence of kinetic parameters of pepsin, rhizopuspepsin, and their active-site hydrogen bond mutants. J Biol Chem. 1992 Sep 15;267(26):18413–18418. [PubMed] [Google Scholar]
  12. Marciniszyn J., Jr, Huang J. S., Hartsuck J. A., Tang J. Mechanism of intramolecular activation of pepsinogen. Evidence for an intermediate delta and the involvement of the active site of pepsin in the intramolecular activation of pepsinogen. J Biol Chem. 1976 Nov 25;251(22):7095–7102. [PubMed] [Google Scholar]
  13. Miller M., Schneider J., Sathyanarayana B. K., Toth M. V., Marshall G. R., Clawson L., Selk L., Kent S. B., Wlodawer A. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science. 1989 Dec 1;246(4934):1149–1152. doi: 10.1126/science.2686029. [DOI] [PubMed] [Google Scholar]
  14. Rao J. K., Erickson J. W., Wlodawer A. Structural and evolutionary relationships between retroviral and eucaryotic aspartic proteinases. Biochemistry. 1991 May 14;30(19):4663–4671. doi: 10.1021/bi00233a005. [DOI] [PubMed] [Google Scholar]
  15. Sielecki A. R., Fedorov A. A., Boodhoo A., Andreeva N. S., James M. N. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990 Jul 5;214(1):143–170. doi: 10.1016/0022-2836(90)90153-D. [DOI] [PubMed] [Google Scholar]
  16. Tang J., James M. N., Hsu I. N., Jenkins J. A., Blundell T. L. Structural evidence for gene duplication in the evolution of the acid proteases. Nature. 1978 Feb 16;271(5646):618–621. doi: 10.1038/271618a0. [DOI] [PubMed] [Google Scholar]
  17. Tang J., Wong R. N. Evolution in the structure and function of aspartic proteases. J Cell Biochem. 1987 Jan;33(1):53–63. doi: 10.1002/jcb.240330106. [DOI] [PubMed] [Google Scholar]
  18. Tiselius A., Henschen G. E., Svensson H. Electrophoresis of pepsin. Biochem J. 1938 Oct;32(10):1814–1818. doi: 10.1042/bj0321814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wlodawer A., Miller M., Jaskólski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616–621. doi: 10.1126/science.2548279. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES