Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 May;2(5):739–752. doi: 10.1002/pro.5560020506

Crystal structure analysis of amicyanin and apoamicyanin from Paracoccus denitrificans at 2.0 A and 1.8 A resolution.

R Durley 1, L Chen 1, L W Lim 1, F S Mathews 1, V L Davidson 1
PMCID: PMC2142492  PMID: 8495197

Abstract

The crystal structure of amicyanin, a cupredoxin isolated from Paracoccus denitrificans, has been determined by molecular replacement. The structure has been refined at 2.0 A resolution using energy-restrained least-squares procedures to a crystallographic residual of 15.7%. The copper-free protein, apoamicyanin, has also been refined to 1.8 A resolution with residual 15.5%. The protein is found to have a beta-sandwich topology with nine beta-strands forming two mixed beta-sheets. The secondary structure is very similar to that observed in the other classes of cupredoxins, such as plastocyanin and azurin. Amicyanin has approximately 20 residues at the N-terminus that have no equivalents in the other proteins; a portion of these residues forms the first beta-strand of the structure. The copper atom is located in a pocket between the beta-sheets and is found to have four coordinating ligands: two histidine nitrogens, one cysteine sulfur, and, at a longer distance, one methionine sulfur. The geometry of the copper coordination is very similar to that in the plant plastocyanins. Three of the four copper ligands are located in the loop between beta-strands eight and nine. This loop is shorter than that in the other cupredoxins, having only two residues each between the cysteine and histidine and the histidine and methionine ligands. The amicyanin and apoamicyanin structures are very similar; in particular, there is little difference in the positions of the coordinating ligands with or without copper. One of the copper ligands, a histidine, lies close to the protein surface and is surrounded on that surface by seven hydrophobic residues. This hydrophobic patch is thought to be important as an electron transfer site.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Turley S., Bramson R., Petratos K., Banner D., Tsernoglou D., Beppu T., Watanabe H. A 2.0-A structure of the blue copper protein (cupredoxin) from Alcaligenes faecalis S-6. J Biol Chem. 1989 Jan 5;264(1):87–99. [PubMed] [Google Scholar]
  2. Ambler R. P., Tobari J. The primary structures of Pseudomonas AM1 amicyanin and pseudoazurin. Two new sequence classes of blue copper proteins. Biochem J. 1985 Dec 1;232(2):451–457. doi: 10.1042/bj2320451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker E. N. Structure of azurin from Alcaligenes denitrificans refinement at 1.8 A resolution and comparison of the two crystallographically independent molecules. J Mol Biol. 1988 Oct 20;203(4):1071–1095. doi: 10.1016/0022-2836(88)90129-5. [DOI] [PubMed] [Google Scholar]
  4. Chen L., Durley R., Poliks B. J., Hamada K., Chen Z., Mathews F. S., Davidson V. L., Satow Y., Huizinga E., Vellieux F. M. Crystal structure of an electron-transfer complex between methylamine dehydrogenase and amicyanin. Biochemistry. 1992 Jun 2;31(21):4959–4964. doi: 10.1021/bi00136a006. [DOI] [PubMed] [Google Scholar]
  5. Chen L., Lim L. W., Mathews F. S., Davidson V. L., Husain M. Preliminary X-ray crystallographic studies of methylamine dehydrogenase and methylamine dehydrogenase--amicyanin complexes from Paracoccus denitrificans. J Mol Biol. 1988 Oct 20;203(4):1137–1138. doi: 10.1016/0022-2836(88)90134-9. [DOI] [PubMed] [Google Scholar]
  6. Collyer C. A., Guss J. M., Sugimura Y., Yoshizaki F., Freeman H. C. Crystal structure of plastocyanin from a green alga, Enteromorpha prolifera. J Mol Biol. 1990 Feb 5;211(3):617–632. doi: 10.1016/0022-2836(90)90269-R. [DOI] [PubMed] [Google Scholar]
  7. Crawford J. L., Lipscomb W. N., Schellman C. G. The reverse turn as a polypeptide conformation in globular proteins. Proc Natl Acad Sci U S A. 1973 Feb;70(2):538–542. doi: 10.1073/pnas.70.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garrett T. P., Clingeleffer D. J., Guss J. M., Rogers S. J., Freeman H. C. The crystal structure of poplar apoplastocyanin at 1.8-A resolution. The geometry of the copper-binding site is created by the polypeptide. J Biol Chem. 1984 Mar 10;259(5):2822–2825. doi: 10.2210/pdb2pcy/pdb. [DOI] [PubMed] [Google Scholar]
  9. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  10. Gray K. A., Davidson V. L., Knaff D. B. Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. J Biol Chem. 1988 Oct 5;263(28):13987–13990. [PubMed] [Google Scholar]
  11. Guss J. M., Freeman H. C. Structure of oxidized poplar plastocyanin at 1.6 A resolution. J Mol Biol. 1983 Sep 15;169(2):521–563. doi: 10.1016/s0022-2836(83)80064-3. [DOI] [PubMed] [Google Scholar]
  12. Guss J. M., Harrowell P. R., Murata M., Norris V. A., Freeman H. C. Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. J Mol Biol. 1986 Nov 20;192(2):361–387. doi: 10.1016/0022-2836(86)90371-2. [DOI] [PubMed] [Google Scholar]
  13. Guss J. M., Merritt E. A., Phizackerley R. P., Hedman B., Murata M., Hodgson K. O., Freeman H. C. Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic "blue" copper protein from cucumbers. Science. 1988 Aug 12;241(4867):806–811. doi: 10.1126/science.3406739. [DOI] [PubMed] [Google Scholar]
  14. Husain M., Davidson V. L., Smith A. J. Properties of Paracoccus denitrificans amicyanin. Biochemistry. 1986 May 6;25(9):2431–2436. doi: 10.1021/bi00357a020. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  16. Lim L. W., Mathews F. S., Husain M., Davidson V. L. Preliminary X-ray crystallographic study of amicyanin from Paracoccus denitrificans. J Mol Biol. 1986 May 5;189(1):257–258. doi: 10.1016/0022-2836(86)90398-0. [DOI] [PubMed] [Google Scholar]
  17. Lim L. W., Mathews F. S., Steenkamp D. J. Crystallographic study of the iron-sulfur flavoprotein trimethylamine dehydrogenase from the bacterium W3A1. J Mol Biol. 1982 Dec 25;162(4):869–876. doi: 10.1016/0022-2836(82)90551-4. [DOI] [PubMed] [Google Scholar]
  18. Lommen A., Wijmenga S., Hilbers C. W., Canters G. W. Assignment of the 600-MHz 1H-NMR spectrum of amicyanin from Thiobacillus versutus by two-dimensional NMR methods provides information on secondary structure. Eur J Biochem. 1991 Nov 1;201(3):695–702. doi: 10.1111/j.1432-1033.1991.tb16330.x. [DOI] [PubMed] [Google Scholar]
  19. Messerschmidt A., Ladenstein R., Huber R., Bolognesi M., Avigliano L., Petruzzelli R., Rossi A., Finazzi-Agró A. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J Mol Biol. 1992 Mar 5;224(1):179–205. doi: 10.1016/0022-2836(92)90583-6. [DOI] [PubMed] [Google Scholar]
  20. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G. W. Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip. J Mol Biol. 1991 Oct 5;221(3):765–772. doi: 10.1016/0022-2836(91)80173-r. [DOI] [PubMed] [Google Scholar]
  21. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G. W. Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 A resolution. FEBS Lett. 1992 Jul 20;306(2-3):119–124. doi: 10.1016/0014-5793(92)80981-l. [DOI] [PubMed] [Google Scholar]
  22. Petratos K., Dauter Z., Wilson K. S. Refinement of the structure of pseudoazurin from Alcaligenes faecalis S-6 at 1.55 A resolution. Acta Crystallogr B. 1988 Dec 1;44(Pt 6):628–636. [PubMed] [Google Scholar]
  23. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  24. Van Beeumen J., Van Bun S., Canters G. W., Lommen A., Chothia C. The structural homology of amicyanin from Thiobacillus versutus to plant plastocyanins. J Biol Chem. 1991 Mar 15;266(8):4869–4877. [PubMed] [Google Scholar]
  25. Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers. 1968 Oct;6(10):1425–1436. doi: 10.1002/bip.1968.360061006. [DOI] [PubMed] [Google Scholar]
  26. van Spanning R. J., Wansell C. W., Reijnders W. N., Oltmann L. F., Stouthamer A. H. Mutagenesis of the gene encoding amicyanin of Paracoccus denitrificans and the resultant effect on methylamine oxidation. FEBS Lett. 1990 Nov 26;275(1-2):217–220. doi: 10.1016/0014-5793(90)81475-4. [DOI] [PubMed] [Google Scholar]
  27. van de Kamp M., Silvestrini M. C., Brunori M., Van Beeumen J., Hali F. C., Canters G. W. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. Eur J Biochem. 1990 Nov 26;194(1):109–118. doi: 10.1111/j.1432-1033.1990.tb19434.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES