Abstract
The complement proteins C3 and C4 have an internal thioester. Upon activation on the surface of a target cell, the thioester becomes exposed and reactive to surface-bound amino and hydroxyl groups, thus allowing covalent deposition of C3 and C4 on these targets. The two human C4 isotypes, C4A and C4B, which differ by only four amino acids, have different binding specificities. C4A binds more efficiently than C4B to amino groups, and C4B is more effective than C4A in binding to hydroxyl groups. By site-directed mutagenesis, the four residues in a cDNA clone of C4B were modified. The variants were expressed and their binding properties studied. Variants with a histidine residue at position 1106 showed C4B-like binding properties, and those with aspartic acid, alanine, or asparagine at the same position were C4A-like. These results suggest that the histidine is important in catalyzing the reaction of the thioester with water and other hydroxyl group-containing compounds. When substituted with other amino acids, this reaction is not catalyzed and the thioester becomes apparently more reactive with amino groups. This interpretation also predicts that the stability of the thioester in C4A and C4B, upon activation, will be different. We measured the time course of activation and binding of glycine to C4A and C4B. The lag in the binding curve behind the activation curve for C4A is significantly greater than that for C4B. The hydrolysis rates (k0) of the thioester in the activated proteins were estimated to be 0.068 s-1 (t1/2 of 10.3 s) for C4A and 1.08 s-1 (t1/2 of 0.64 s) for C4B. These results indicate that the difference in hydrolysis rate of the thioester accounts, at least in part, for the difference in the binding properties of C4A and C4B.
Full Text
The Full Text of this article is available as a PDF (1,016.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belt K. T., Carroll M. C., Porter R. R. The structural basis of the multiple forms of human complement component C4. Cell. 1984 Apr;36(4):907–914. doi: 10.1016/0092-8674(84)90040-0. [DOI] [PubMed] [Google Scholar]
- Carroll M. C., Fathallah D. M., Bergamaschini L., Alicot E. M., Isenman D. E. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6868–6872. doi: 10.1073/pnas.87.17.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockett M. I., Bebbington C. R., Yarranton G. T. High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (N Y) 1990 Jul;8(7):662–667. doi: 10.1038/nbt0790-662. [DOI] [PubMed] [Google Scholar]
- Davis S. J., Ward H. A., Puklavec M. J., Willis A. C., Williams A. F., Barclay A. N. High level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants. J Biol Chem. 1990 Jun 25;265(18):10410–10418. [PubMed] [Google Scholar]
- Dodds A. W., Law S. K., Porter R. R. The purification and properties of some less common allotypes of the fourth component of human complement. Immunogenetics. 1986;24(5):279–285. doi: 10.1007/BF00395532. [DOI] [PubMed] [Google Scholar]
- Dodds A. W., Law S. K. Structural basis of the binding specificity of the thioester-containing proteins, C4, C3 and alpha-2-macroglobulin. Complement. 1988;5(2):89–97. doi: 10.1159/000463039. [DOI] [PubMed] [Google Scholar]
- Dodds A. W., Law S. K. The complement component C4 of mammals. Biochem J. 1990 Jan 15;265(2):495–502. doi: 10.1042/bj2650495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson B. W., Khan S. A. Synthetic lactam and thiolactone models of protein metastable binding sites. Ann N Y Acad Sci. 1983;421:167–177. doi: 10.1111/j.1749-6632.1983.tb18107.x. [DOI] [PubMed] [Google Scholar]
- Hall R. E., Colten H. R. Cell-free synthesis of the fourth component of guinea pig complement (C4): identification of a precursor of serum C4 (pro-C4). Proc Natl Acad Sci U S A. 1977 Apr;74(4):1707–1710. doi: 10.1073/pnas.74.4.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison R. A., Thomas M. L., Tack B. F. Sequence determination of the thiolester site of the fourth component of human complement. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7388–7392. doi: 10.1073/pnas.78.12.7388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard J. B. Reactive centers in alpha 2-macroglobulin. Ann N Y Acad Sci. 1983;421:69–80. doi: 10.1111/j.1749-6632.1983.tb18093.x. [DOI] [PubMed] [Google Scholar]
- Isenman D. E., Young J. R. The molecular basis for the difference in immune hemolysis activity of the Chido and Rodgers isotypes of human complement component C4. J Immunol. 1984 Jun;132(6):3019–3027. [PubMed] [Google Scholar]
- Khan S. A., Erickson B. W. An equilibrium model of the metastable binding sites of alpha 2-macroglobulin and complement proteins C3 and C4. J Biol Chem. 1982 Oct 25;257(20):11864–11867. [PubMed] [Google Scholar]
- Law S. K., Dodds A. W., Porter R. R. A comparison of the properties of two classes, C4A and C4B, of the human complement component C4. EMBO J. 1984 Aug;3(8):1819–1823. doi: 10.1002/j.1460-2075.1984.tb02052.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law S. K., Levine R. P. Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2701–2705. doi: 10.1073/pnas.74.7.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law S. K., Lichtenberg N. A., Levine R. P. Covalent binding and hemolytic activity of complement proteins. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7194–7198. doi: 10.1073/pnas.77.12.7194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law S. K., Minich T. M., Levine R. P. Binding reaction between the third human complement protein and small molecules. Biochemistry. 1981 Dec 22;20(26):7457–7463. doi: 10.1021/bi00529a020. [DOI] [PubMed] [Google Scholar]
- Law S. K., Minich T. M., Levine R. P. Covalent binding efficiency of the third and fourth complement proteins in relation to pH, nucleophilicity, and availability of hydroxyl groups. Biochemistry. 1984 Jul 3;23(14):3267–3272. doi: 10.1021/bi00309a022. [DOI] [PubMed] [Google Scholar]
- Law S. K. Non-enzymic activation of the covalent binding reaction of the complement protein C3. Biochem J. 1983 May 1;211(2):381–389. doi: 10.1042/bj2110381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law S. K. The covalent binding reaction of C3 and C4. Ann N Y Acad Sci. 1983;421:246–258. doi: 10.1111/j.1749-6632.1983.tb18113.x. [DOI] [PubMed] [Google Scholar]
- Nonaka M., Nakayama K., Yeul Y. D., Takahashi M. Complete nucleotide and derived amino acid sequences of the fourth component of mouse complement (C4). Evolutionary aspects. J Biol Chem. 1985 Sep 15;260(20):10936–10943. [PubMed] [Google Scholar]
- Ren X. D., Dodds A. W., Law S. K. The thioester and isotypic sites of complement component C4 in sheep and cattle. Immunogenetics. 1993;37(2):120–128. doi: 10.1007/BF00216835. [DOI] [PubMed] [Google Scholar]
- Sepich D. S., Noonan D. J., Ogata R. T. Complete cDNA sequence of the fourth component of murine complement. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5895–5899. doi: 10.1073/pnas.82.17.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu C. Y., Belt K. T., Giles C. M., Campbell R. D., Porter R. R. Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J. 1986 Nov;5(11):2873–2881. doi: 10.1002/j.1460-2075.1986.tb04582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Bruijn M. H., Fey G. H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci U S A. 1985 Feb;82(3):708–712. doi: 10.1073/pnas.82.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]