Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 May;2(5):697–705. doi: 10.1002/pro.5560020501

The curious case of protein splicing: mechanistic insights suggested by protein semisynthesis.

C J Wallace 1
PMCID: PMC2142502  PMID: 8495192

Abstract

The gradual accumulation of examples of protein splicing, in which a nested intervening sequence is spliced out of the interior of a polyprotein precursor, suggests that this curious phenomenon might prove to have universal phylogenetic distribution and biological significance. The known examples are reviewed, with the aim of establishing underlying patterns, and a generalized mechanism of autocatalytic protein splicing is proposed. The testable consequences of such a proposal and the possible evolutionary origins of the phenomenon are discussed.

Full Text

The Full Text of this article is available as a PDF (971.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold E., Luo M., Vriend G., Rossmann M. G., Palmenberg A. C., Parks G. D., Nicklin M. J., Wimmer E. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci U S A. 1987 Jan;84(1):21–25. doi: 10.1073/pnas.84.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowles D. J., Pappin D. J. Traffic and assembly of concanavalin A. Trends Biochem Sci. 1988 Feb;13(2):60–64. doi: 10.1016/0968-0004(88)90030-8. [DOI] [PubMed] [Google Scholar]
  3. Canova-Davis E., Kessler T. J., Ling V. T. Transpeptidation during the analytical proteolysis of proteins. Anal Biochem. 1991 Jul;196(1):39–45. doi: 10.1016/0003-2697(91)90114-9. [DOI] [PubMed] [Google Scholar]
  4. Davis E. O., Jenner P. J., Brooks P. C., Colston M. J., Sedgwick S. G. Protein splicing in the maturation of M. tuberculosis recA protein: a mechanism for tolerating a novel class of intervening sequence. Cell. 1992 Oct 16;71(2):201–210. doi: 10.1016/0092-8674(92)90349-h. [DOI] [PubMed] [Google Scholar]
  5. Dyckes D. F., Creighton T., Sheppard R. C. Spontaneous re-formation of a broken peptide chain. Nature. 1974 Jan 25;247(5438):202–204. doi: 10.1038/247202a0. [DOI] [PubMed] [Google Scholar]
  6. Gilbert W. The exon theory of genes. Cold Spring Harb Symp Quant Biol. 1987;52:901–905. doi: 10.1101/sqb.1987.052.01.098. [DOI] [PubMed] [Google Scholar]
  7. Hershko A. Ubiquitin-mediated protein degradation. J Biol Chem. 1988 Oct 25;263(30):15237–15240. [PubMed] [Google Scholar]
  8. Hirata R., Anraku Y. Mutations at the putative junction sites of the yeast VMA1 protein, the catalytic subunit of the vacuolar membrane H(+)-ATPase, inhibit its processing by protein splicing. Biochem Biophys Res Commun. 1992 Oct 15;188(1):40–47. doi: 10.1016/0006-291x(92)92347-z. [DOI] [PubMed] [Google Scholar]
  9. Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
  10. Hodges R. A., Perler F. B., Noren C. J., Jack W. E. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 1992 Dec 11;20(23):6153–6157. doi: 10.1093/nar/20.23.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Homandberg G. A., Laskowski M., Jr Enzymatic resynthesis of the hydrolyzed peptide bond(s) in ribonuclease S. Biochemistry. 1979 Feb 20;18(4):586–592. doi: 10.1021/bi00571a006. [DOI] [PubMed] [Google Scholar]
  12. Homandberg G. A., Mattis J. A., Laskowski M., Jr Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibria toward synthesis. Biochemistry. 1978 Nov 28;17(24):5220–5227. doi: 10.1021/bi00617a023. [DOI] [PubMed] [Google Scholar]
  13. Hough R., Pratt G., Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem. 1987 Jun 15;262(17):8303–8313. [PubMed] [Google Scholar]
  14. Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
  15. Kanno H., Huang I. Y., Kan Y. W., Yoshida A. Two structural genes on different chromosomes are required for encoding the major subunit of human red cell glucose-6-phosphate dehydrogenase. Cell. 1989 Aug 11;58(3):595–606. doi: 10.1016/0092-8674(89)90440-6. [DOI] [PubMed] [Google Scholar]
  16. Kent S. B. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1988;57:957–989. doi: 10.1146/annurev.bi.57.070188.004521. [DOI] [PubMed] [Google Scholar]
  17. Offord R. E. Protein engineering by chemical means? Protein Eng. 1987 Jun;1(3):151–157. doi: 10.1093/protein/1.3.151. [DOI] [PubMed] [Google Scholar]
  18. Proudfoot A. E., Rose K., Wallace C. J. Conformation-directed recombination of enzyme-activated peptide fragments: a simple and efficient means to protein engineering. Its use in the creation of cytochrome c analogues for structure-function studies. J Biol Chem. 1989 May 25;264(15):8764–8770. [PubMed] [Google Scholar]
  19. Shub D. A., Goodrich-Blair H. Protein introns: a new home for endonucleases. Cell. 1992 Oct 16;71(2):183–186. doi: 10.1016/0092-8674(92)90345-d. [DOI] [PubMed] [Google Scholar]
  20. Sizmann D., Keilmann C., Böck A. Primary structure requirements for the maturation in vivo of penicillin acylase from Escherichia coli ATCC 11105. Eur J Biochem. 1990 Aug 28;192(1):143–151. doi: 10.1111/j.1432-1033.1990.tb19207.x. [DOI] [PubMed] [Google Scholar]
  21. Thöny-Meyer L., Böck A., Hennecke H. Prokaryotic polyprotein precursors. FEBS Lett. 1992 Jul 27;307(1):62–65. doi: 10.1016/0014-5793(92)80902-s. [DOI] [PubMed] [Google Scholar]
  22. Wallace C. J., Clark-Lewis I. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis. J Biol Chem. 1992 Feb 25;267(6):3852–3861. [PubMed] [Google Scholar]
  23. Wallace C. J., Corthésy B. E. Protein engineering of cytochrome c by semisynthesis: substitutions at glutamic acid 66. Protein Eng. 1986 Oct-Nov;1(1):23–27. [PubMed] [Google Scholar]
  24. Wallace C. J., Mascagni P., Chait B. T., Collawn J. F., Paterson Y., Proudfoot A. E., Kent S. B. Substitutions engineered by chemical synthesis at three conserved sites in mitochondrial cytochrome c. Thermodynamic and functional consequences. J Biol Chem. 1989 Sep 15;264(26):15199–15209. [PubMed] [Google Scholar]
  25. Waxman L., Goldberg A. L. Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science. 1986 Apr 25;232(4749):500–503. doi: 10.1126/science.2938257. [DOI] [PubMed] [Google Scholar]
  26. Wernette C. M., Saldahna R., Perlman P. S., Butow R. A. Purification of a site-specific endonuclease, I-Sce II, encoded by intron 4 alpha of the mitochondrial coxI gene of Saccharomyces cerevisiae. J Biol Chem. 1990 Nov 5;265(31):18976–18982. [PubMed] [Google Scholar]
  27. Wetmore D. R., Wong S. L., Roche R. S. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus. Mol Microbiol. 1992 Jun;6(12):1593–1604. doi: 10.1111/j.1365-2958.1992.tb00884.x. [DOI] [PubMed] [Google Scholar]
  28. Yamauchi D., Minamikawa T. Structure of the gene encoding concanavalin A from Canavalia gladiata and its expression in Escherichia coli cells. FEBS Lett. 1990 Jan 15;260(1):127–130. doi: 10.1016/0014-5793(90)80083-u. [DOI] [PubMed] [Google Scholar]
  29. Yoshida A., Kan Y. W. Origin of "fused" glucose-6-phosphate dehydrogenase. Cell. 1990 Jul 13;62(1):11–12. doi: 10.1016/0092-8674(90)90233-5. [DOI] [PubMed] [Google Scholar]
  30. van Poelje P. D., Kamath A. V., Snell E. E. Site-directed alteration of the active-site residues of histidine decarboxylase from Clostridium perfringens. Biochemistry. 1990 Nov 13;29(45):10413–10418. doi: 10.1021/bi00497a017. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES