Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 May;2(5):733–738. doi: 10.1002/pro.5560020505

Estimation of the maximum change in stability of globular proteins upon mutation of a hydrophobic residue to another of smaller size.

B Lee 1
PMCID: PMC2142503  PMID: 8495196

Abstract

Although the hydrophobic effect is generally considered to be one of the most important forces in stabilizing the folded structure of a globular protein molecule, there is a lack of consensus on the precise magnitude of this effect. The magnitude of the hydrophobic effect is most directly measured by observing the change in stability of a protein molecule when an internal hydrophobic residue is mutated to another of smaller size. Results of such measurements have, however, been confusing because they vary greatly and are generally considerably larger than expected from the transfer free energies of corresponding small molecules. In this article, a thermodynamic argument is presented to show (1) that the variation is mainly due to that in the flexibility of the protein molecule at the site of mutation, (2) that the maximum destabilization occurs when the protein at the site of mutation is rigid, in which case the value of the destabilization is approximately given by the work of cavity formation in water, and (3) that the transfer free energy approximately gives the minimum of the range of variations. The best numerical agreements between the small molecule and the protein systems are obtained when the data from the small molecule system are expressed as the molarity-based standard free energies without other corrections.

Full Text

The Full Text of this article is available as a PDF (617.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  2. Kellis J. T., Jr, Nyberg K., Fersht A. R. Energetics of complementary side-chain packing in a protein hydrophobic core. Biochemistry. 1989 May 30;28(11):4914–4922. doi: 10.1021/bi00437a058. [DOI] [PubMed] [Google Scholar]
  3. Lee B. Solvent reorganization contribution to the transfer thermodynamics of small nonpolar molecules. Biopolymers. 1991 Jul;31(8):993–1008. doi: 10.1002/bip.360310809. [DOI] [PubMed] [Google Scholar]
  4. Matsumura M., Becktel W. J., Matthews B. W. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature. 1988 Aug 4;334(6181):406–410. doi: 10.1038/334406a0. [DOI] [PubMed] [Google Scholar]
  5. Murphy K. P., Gill S. J. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991 Dec 5;222(3):699–709. doi: 10.1016/0022-2836(91)90506-2. [DOI] [PubMed] [Google Scholar]
  6. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  7. Pace C. N. Contribution of the hydrophobic effect to globular protein stability. J Mol Biol. 1992 Jul 5;226(1):29–35. doi: 10.1016/0022-2836(92)90121-y. [DOI] [PubMed] [Google Scholar]
  8. Pohorille A., Pratt L. R. Cavities in molecular liquids and the theory of hydrophobic solubilities. J Am Chem Soc. 1990;112(13):5066–5074. doi: 10.1021/ja00169a011. [DOI] [PubMed] [Google Scholar]
  9. Prevost M., Wodak S. J., Tidor B., Karplus M. Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96----Ala mutation in barnase. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10880–10884. doi: 10.1073/pnas.88.23.10880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Richards F. M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol. 1974 Jan 5;82(1):1–14. doi: 10.1016/0022-2836(74)90570-1. [DOI] [PubMed] [Google Scholar]
  11. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  12. Sandberg W. S., Terwilliger T. C. Energetics of repacking a protein interior. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1706–1710. doi: 10.1073/pnas.88.5.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shortle D., Chan H. S., Dill K. A. Modeling the effects of mutations on the denatured states of proteins. Protein Sci. 1992 Feb;1(2):201–215. doi: 10.1002/pro.5560010202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES