Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Oct;3(10):1670–1686. doi: 10.1002/pro.5560031006

Protein crystallography and infectious diseases.

C L Verlinde 1, E A Merritt 1, F Van den Akker 1, H Kim 1, I Feil 1, L F Delboni 1, S C Mande 1, S Sarfaty 1, P H Petra 1, W G Hol 1
PMCID: PMC2142599  PMID: 7849584

Abstract

The current rapid growth in the number of known 3-dimensional protein structures is producing a database of structures that is increasingly useful as a starting point for the development of new medically relevant molecules such as drugs, therapeutic proteins, and vaccines. This development is beautifully illustrated in the recent book, Protein structure: New approaches to disease and therapy (Perutz, 1992). There is a great and growing promise for the design of molecules for the treatment or prevention of a wide variety of diseases, an endeavor made possible by the insights derived from the structure and function of crucial proteins from pathogenic organisms and from man. We present here 2 illustrations of structure-based drug design. The first is the prospect of developing antitrypanosomal drugs based on crystallographic, ligand-binding, and molecular modeling studies of glycolytic glycosomal enzymes from Trypanosomatidae. These unicellular organisms are responsible for several tropical diseases, including African and American trypanosomiases, as well as various forms of leishmaniasis. Because the target enzymes are also present in the human host, this project is a pioneering study in selective design. The second illustrative case is the prospect of designing anti-cholera drugs based on detailed analysis of the structure of cholera toxin and the closely related Escherichia coli heat-labile enterotoxin. Such potential drugs can be targeted either at inhibiting the toxin's receptor binding site or at blocking the toxin's intracellular catalytic activity. Study of the Vibrio cholerae and E. coli toxins serves at the same time as an example of a general approach to structure-based vaccine design. These toxins exhibit a remarkable ability to stimulate the mucosal immune system, and early results have suggested that this property can be maintained by engineered fusion proteins based on the native toxin structure. The challenge is thus to incorporate selected epitopes from foreign pathogens into the native framework of the toxin such that crucial features of both the epitope and the toxin are maintained. That is, the modified toxin must continue to evoke a strong mucosal immune response, and this response must be directed against an epitope conformation characteristic of the original pathogen.

Full Text

The Full Text of this article is available as a PDF (10.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Banner D. W., Bloomer A. C., Petsko G. A., Phillips D., Rivers P. S., Wilson I. A. On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase. Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):159–171. doi: 10.1098/rstb.1981.0069. [DOI] [PubMed] [Google Scholar]
  2. Allured V. S., Collier R. J., Carroll S. F., McKay D. B. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1320–1324. doi: 10.1073/pnas.83.5.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arcari P., Martinelli R., Salvatore F. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species. Nucleic Acids Res. 1984 Dec 11;12(23):9179–9189. doi: 10.1093/nar/12.23.9179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beddell C. R., Goodford P. J., Norrington F. E., Wilkinson S., Wootton R. Compounds designed to fit a site of known structure in human haemoglobin. Br J Pharmacol. 1976 Jun;57(2):201–209. doi: 10.1111/j.1476-5381.1976.tb07468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bellofatto V., Fairlamb A. H., Henderson G. B., Cross G. A. Biochemical changes associated with alpha-difluoromethylornithine uptake and resistance in Trypanosoma brucei. Mol Biochem Parasitol. 1987 Oct;25(3):227–238. doi: 10.1016/0166-6851(87)90086-7. [DOI] [PubMed] [Google Scholar]
  6. Black R. E., Merson M. H., Huq I., Alim A. R., Yunus M. Incidence and severity of rotavirus and Escherichia coli diarrhoea in rural Bangladesh. Implications for vaccine development. Lancet. 1981 Jan 17;1(8212):141–143. doi: 10.1016/s0140-6736(81)90719-4. [DOI] [PubMed] [Google Scholar]
  7. Blattner J., Swinkels B., Dörsam H., Prospero T., Subramani S., Clayton C. Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a COOH-terminal microbody targeting signal. J Cell Biol. 1992 Dec;119(5):1129–1136. doi: 10.1083/jcb.119.5.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blum M. L., Down J. A., Gurnett A. M., Carrington M., Turner M. J., Wiley D. C. A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature. 1993 Apr 15;362(6421):603–609. doi: 10.1038/362603a0. [DOI] [PubMed] [Google Scholar]
  9. Borchert T. V., Pratt K., Zeelen J. P., Callens M., Noble M. E., Opperdoes F. R., Michels P. A., Wierenga R. K. Overexpression of trypanosomal triosephosphate isomerase in Escherichia coli and characterisation of a dimer-interface mutant. Eur J Biochem. 1993 Feb 1;211(3):703–710. doi: 10.1111/j.1432-1033.1993.tb17599.x. [DOI] [PubMed] [Google Scholar]
  10. Brange J., Ribel U., Hansen J. F., Dodson G., Hansen M. T., Havelund S., Melberg S. G., Norris F., Norris K., Snel L. Monomeric insulins obtained by protein engineering and their medical implications. Nature. 1988 Jun 16;333(6174):679–682. doi: 10.1038/333679a0. [DOI] [PubMed] [Google Scholar]
  11. Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382. doi: 10.1146/annurev.mi.27.100173.002023. [DOI] [PubMed] [Google Scholar]
  12. Böhm H. J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des. 1992 Feb;6(1):61–78. doi: 10.1007/BF00124387. [DOI] [PubMed] [Google Scholar]
  13. Carter N. S., Fairlamb A. H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 1993 Jan 14;361(6408):173–176. doi: 10.1038/361173a0. [DOI] [PubMed] [Google Scholar]
  14. Chang M. L., Artymiuk P. J., Wu X., Hollán S., Lammi A., Maquat L. E. Human triosephosphate isomerase deficiency resulting from mutation of Phe-240. Am J Hum Genet. 1993 Jun;52(6):1260–1269. [PMC free article] [PubMed] [Google Scholar]
  15. Clarkson A. B., Jr, Brohn F. H. Trypanosomiasis: an approach to chemotherapy by the inhibition of carbohydrate catabolism. Science. 1976 Oct 8;194(4261):204–206. doi: 10.1126/science.986688. [DOI] [PubMed] [Google Scholar]
  16. Clements J. D., Hartzog N. M., Lyon F. L. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine. 1988 Jun;6(3):269–277. doi: 10.1016/0264-410x(88)90223-x. [DOI] [PubMed] [Google Scholar]
  17. Cushman D. W., Cheung H. S., Sabo E. F., Ondetti M. A. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry. 1977 Dec 13;16(25):5484–5491. doi: 10.1021/bi00644a014. [DOI] [PubMed] [Google Scholar]
  18. Czerkinsky C., Russell M. W., Lycke N., Lindblad M., Holmgren J. Oral administration of a streptococcal antigen coupled to cholera toxin B subunit evokes strong antibody responses in salivary glands and extramucosal tissues. Infect Immun. 1989 Apr;57(4):1072–1077. doi: 10.1128/iai.57.4.1072-1077.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Daar I. O., Artymiuk P. J., Phillips D. C., Maquat L. E. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7903–7907. doi: 10.1073/pnas.83.20.7903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994 Apr 15;264(5157):375–382. doi: 10.1126/science.8153624. [DOI] [PubMed] [Google Scholar]
  21. Dertzbaugh M. T., Peterson D. L., Macrina F. L. Cholera toxin B-subunit gene fusion: structural and functional analysis of the chimeric protein. Infect Immun. 1990 Jan;58(1):70–79. doi: 10.1128/iai.58.1.70-79.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Elson C. O., Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol. 1984 Jun;132(6):2736–2741. [PubMed] [Google Scholar]
  23. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  24. Fung K., Clayton C. Recognition of a peroxisomal tripeptide entry signal by the glycosomes of Trypanosoma brucei. Mol Biochem Parasitol. 1991 Apr;45(2):261–264. doi: 10.1016/0166-6851(91)90093-l. [DOI] [PubMed] [Google Scholar]
  25. Gallop M. A., Barrett R. W., Dower W. J., Fodor S. P., Gordon E. M. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem. 1994 Apr 29;37(9):1233–1251. doi: 10.1021/jm00035a001. [DOI] [PubMed] [Google Scholar]
  26. Greer J., Erickson J. W., Baldwin J. J., Varney M. D. Application of the three-dimensional structures of protein target molecules in structure-based drug design. J Med Chem. 1994 Apr 15;37(8):1035–1054. doi: 10.1021/jm00034a001. [DOI] [PubMed] [Google Scholar]
  27. Gyr K., Meier R. Acute infectious diarrhea. Trop Med Parasitol. 1987 Sep;38(3):236–238. [PubMed] [Google Scholar]
  28. Hale G., Dyer M. J., Clark M. R., Phillips J. M., Marcus R., Riechmann L., Winter G., Waldmann H. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet. 1988 Dec 17;2(8625):1394–1399. doi: 10.1016/s0140-6736(88)90588-0. [DOI] [PubMed] [Google Scholar]
  29. Haller L., Adams H., Merouze F., Dago A. Clinical and pathological aspects of human African trypanosomiasis (T. b. gambiense) with particular reference to reactive arsenical encephalopathy. Am J Trop Med Hyg. 1986 Jan;35(1):94–99. doi: 10.4269/ajtmh.1986.35.94. [DOI] [PubMed] [Google Scholar]
  30. Hannaert V., Blaauw M., Kohl L., Allert S., Opperdoes F. R., Michels P. A. Molecular analysis of the cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase in Leishmania mexicana. Mol Biochem Parasitol. 1992 Oct;55(1-2):115–126. doi: 10.1016/0166-6851(92)90132-4. [DOI] [PubMed] [Google Scholar]
  31. Hardy S. J., Holmgren J., Johansson S., Sanchez J., Hirst T. R. Coordinated assembly of multisubunit proteins: oligomerization of bacterial enterotoxins in vivo and in vitro. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7109–7113. doi: 10.1073/pnas.85.19.7109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Holmgren J., Lycke N., Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine. 1993 Sep;11(12):1179–1184. doi: 10.1016/0264-410x(93)90039-z. [DOI] [PubMed] [Google Scholar]
  33. Jackson R. J., Fujihashi K., Xu-Amano J., Kiyono H., Elson C. O., McGhee J. R. Optimizing oral vaccines: induction of systemic and mucosal B-cell and antibody responses to tetanus toxoid by use of cholera toxin as an adjuvant. Infect Immun. 1993 Oct;61(10):4272–4279. doi: 10.1128/iai.61.10.4272-4279.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Joseph-McCarthy D., Lolis E., Komives E. A., Petsko G. A. Crystal structure of the K12M/G15A triosephosphate isomerase double mutant and electrostatic analysis of the active site. Biochemistry. 1994 Mar 15;33(10):2815–2823. doi: 10.1021/bi00176a010. [DOI] [PubMed] [Google Scholar]
  35. Knowles J. R. Enzyme catalysis: not different, just better. Nature. 1991 Mar 14;350(6314):121–124. doi: 10.1038/350121a0. [DOI] [PubMed] [Google Scholar]
  36. Kuntz I. D. Structure-based strategies for drug design and discovery. Science. 1992 Aug 21;257(5073):1078–1082. doi: 10.1126/science.257.5073.1078. [DOI] [PubMed] [Google Scholar]
  37. Lambeir A. M., Loiseau A. M., Kuntz D. A., Vellieux F. M., Michels P. A., Opperdoes F. R. The cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei. Kinetic properties and comparison with homologous enzymes. Eur J Biochem. 1991 Jun 1;198(2):429–435. doi: 10.1111/j.1432-1033.1991.tb16032.x. [DOI] [PubMed] [Google Scholar]
  38. Lolis E., Alber T., Davenport R. C., Rose D., Hartman F. C., Petsko G. A. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry. 1990 Jul 17;29(28):6609–6618. doi: 10.1021/bi00480a009. [DOI] [PubMed] [Google Scholar]
  39. Lycke N., Tsuji T., Holmgren J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur J Immunol. 1992 Sep;22(9):2277–2281. doi: 10.1002/eji.1830220915. [DOI] [PubMed] [Google Scholar]
  40. Mande S. C., Mainfroid V., Kalk K. H., Goraj K., Martial J. A., Hol W. G. Crystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme. Protein Sci. 1994 May;3(5):810–821. doi: 10.1002/pro.5560030510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McGhee J. R., Mestecky J., Dertzbaugh M. T., Eldridge J. H., Hirasawa M., Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10(2):75–88. doi: 10.1016/0264-410x(92)90021-b. [DOI] [PubMed] [Google Scholar]
  42. McKenzie S. J., Halsey J. F. Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. J Immunol. 1984 Oct;133(4):1818–1824. [PubMed] [Google Scholar]
  43. Mengel J. O., Rossi M. A. Chronic chagasic myocarditis pathogenesis: dependence on autoimmune and microvascular factors. Am Heart J. 1992 Oct;124(4):1052–1057. doi: 10.1016/0002-8703(92)90991-4. [DOI] [PubMed] [Google Scholar]
  44. Mercer W. D., Winn S. I., Watson H. C. Twinning in crystals of human skeletal muscle D-glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1976 Jun 14;104(1):277–283. doi: 10.1016/0022-2836(76)90013-9. [DOI] [PubMed] [Google Scholar]
  45. Merritt E. A., Pronk S. E., Sixma T. K., Kalk K. H., van Zanten B. A., Hol W. G. Structure of partially-activated E. coli heat-labile enterotoxin (LT) at 2.6 A resolution. FEBS Lett. 1994 Jan 3;337(1):88–92. doi: 10.1016/0014-5793(94)80635-7. [DOI] [PubMed] [Google Scholar]
  46. Merritt E. A., Sarfaty S., van den Akker F., L'Hoir C., Martial J. A., Hol W. G. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 1994 Feb;3(2):166–175. doi: 10.1002/pro.5560030202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Michels P. A., Marchand M., Kohl L., Allert S., Wierenga R. K., Opperdoes F. R. The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. Eur J Biochem. 1991 Jun 1;198(2):421–428. doi: 10.1111/j.1432-1033.1991.tb16031.x. [DOI] [PubMed] [Google Scholar]
  48. Michels P. A., Poliszczak A., Osinga K. A., Misset O., Van Beeumen J., Wierenga R. K., Borst P., Opperdoes F. R. Two tandemly linked identical genes code for the glycosomal glyceraldehyde-phosphate dehydrogenase in Trypanosoma brucei. EMBO J. 1986 May;5(5):1049–1056. doi: 10.1002/j.1460-2075.1986.tb04321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Moss J., Stanley S. J., Vaughan M., Tsuji T. Interaction of ADP-ribosylation factor with Escherichia coli enterotoxin that contains an inactivating lysine 112 substitution. J Biol Chem. 1993 Mar 25;268(9):6383–6387. [PubMed] [Google Scholar]
  50. Murthy M. R., Garavito R. M., Johnson J. E., Rossmann M. G. Structure of lobster apo-D-glyceraldehyde-3-phosphate dehydrogenase at 3.0 A resolution. J Mol Biol. 1980 Apr 25;138(4):859–872. doi: 10.1016/0022-2836(80)90069-8. [DOI] [PubMed] [Google Scholar]
  51. Neu H. C. The crisis in antibiotic resistance. Science. 1992 Aug 21;257(5073):1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
  52. Noble M. E., Verlinde C. L., Groendijk H., Kalk K. H., Wierenga R. K., Hol W. G. Crystallographic and molecular modeling studies on trypanosomal triosephosphate isomerase: a critical assessment of the predicted and observed structures of the complex with 2-phosphoglycerate. J Med Chem. 1991 Sep;34(9):2709–2718. doi: 10.1021/jm00113a007. [DOI] [PubMed] [Google Scholar]
  53. Noble M. E., Wierenga R. K., Lambeir A. M., Opperdoes F. R., Thunnissen A. M., Kalk K. H., Groendijk H., Hol W. G. The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes. Proteins. 1991;10(1):50–69. doi: 10.1002/prot.340100106. [DOI] [PubMed] [Google Scholar]
  54. Nowak K., Wolny M., Banaś T. The complete amino acid sequence of human muscle glyceraldehyde 3-phosphate dehydrogenase. FEBS Lett. 1981 Nov 16;134(2):143–146. doi: 10.1016/0014-5793(81)80587-x. [DOI] [PubMed] [Google Scholar]
  55. Opperdoes F. R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 1977 Aug 15;80(2):360–364. doi: 10.1016/0014-5793(77)80476-6. [DOI] [PubMed] [Google Scholar]
  56. Perry B. A., Mohrenweiser H. W. Human triosephosphate isomerase: substitution of Arg for Gly at position 122 in a thermolabile electromorph variant, TPI-Manchester. Hum Genet. 1992 Mar;88(6):634–638. doi: 10.1007/BF02265287. [DOI] [PubMed] [Google Scholar]
  57. Pronk S. E., Hofstra H., Groendijk H., Kingma J., Swarte M. B., Dorner F., Drenth J., Hol W. G., Witholt B. Heat-labile enterotoxin of Escherichia coli. Characterization of different crystal forms. J Biol Chem. 1985 Nov 5;260(25):13580–13584. [PubMed] [Google Scholar]
  58. Riechmann L., Clark M., Waldmann H., Winter G. Reshaping human antibodies for therapy. Nature. 1988 Mar 24;332(6162):323–327. doi: 10.1038/332323a0. [DOI] [PubMed] [Google Scholar]
  59. Sanchez J., Johansson S., Löwenadler B., Svennerholm A. M., Holmgren J. Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination. Res Microbiol. 1990 Sep-Oct;141(7-8):971–979. doi: 10.1016/0923-2508(90)90137-f. [DOI] [PubMed] [Google Scholar]
  60. Sixma T. K., Aguirre A., Terwisscha van Scheltinga A. C., Wartna E. S., Kalk K. H., Hol W. G. Heat-labile enterotoxin crystal forms with variable A/B5 orientation. Analysis of conformational flexibility. FEBS Lett. 1992 Jun 29;305(2):81–85. doi: 10.1016/0014-5793(92)80869-i. [DOI] [PubMed] [Google Scholar]
  61. Sixma T. K., Kalk K. H., van Zanten B. A., Dauter Z., Kingma J., Witholt B., Hol W. G. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol. 1993 Apr 5;230(3):890–918. doi: 10.1006/jmbi.1993.1209. [DOI] [PubMed] [Google Scholar]
  62. Sixma T. K., Pronk S. E., Kalk K. H., Wartna E. S., van Zanten B. A., Witholt B., Hol W. G. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature. 1991 May 30;351(6325):371–377. doi: 10.1038/351371a0. [DOI] [PubMed] [Google Scholar]
  63. Sommer J. M., Peterson G., Keller G. A., Parsons M., Wang C. C. The C-terminal tripeptide of glycosomal phosphoglycerate kinase is both necessary and sufficient for import into the glycosomes of Trypanosoma brucei. FEBS Lett. 1993 Jan 18;316(1):53–58. doi: 10.1016/0014-5793(93)81735-i. [DOI] [PubMed] [Google Scholar]
  64. Soukri A., Mougin A., Corbier C., Wonacott A., Branlant C., Branlant G. Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis. Biochemistry. 1989 Mar 21;28(6):2586–2592. doi: 10.1021/bi00432a036. [DOI] [PubMed] [Google Scholar]
  65. Swinkels B. W., Gibson W. C., Osinga K. A., Kramer R., Veeneman G. H., van Boom J. H., Borst P. Characterization of the gene for the microbody (glycosomal) triosephosphate isomerase of Trypanosoma brucei. EMBO J. 1986 Jun;5(6):1291–1298. doi: 10.1002/j.1460-2075.1986.tb04358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Thaisrivongs S., Tomasselli A. G., Moon J. B., Hui J., McQuade T. J., Turner S. R., Strohbach J. W., Howe W. J., Tarpley W. G., Heinrikson R. L. Inhibitors of the protease from human immunodeficiency virus: design and modeling of a compound containing a dihydroxyethylene isostere insert with high binding affinity and effective antiviral activity. J Med Chem. 1991 Aug;34(8):2344–2356. doi: 10.1021/jm00112a005. [DOI] [PubMed] [Google Scholar]
  67. Trentham D. R. Rate-determining processes and the number of simultaneously active sties of D-glyceraldehyde 3-phosphate dehydrogenase. Biochem J. 1971 Mar;122(1):71–77. doi: 10.1042/bj1220071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tulinsky A., Qiu X. Active site and exosite binding of alpha-thrombin. Blood Coagul Fibrinolysis. 1993 Apr;4(2):305–312. doi: 10.1097/00001721-199304000-00012. [DOI] [PubMed] [Google Scholar]
  69. Van der Heijden P. J., Bianchi A. T., Dol M., Pals J. W., Stok W., Bokhout B. A. Manipulation of intestinal immune responses against ovalbumin by cholera toxin and its B subunit in mice. Immunology. 1991 Jan;72(1):89–93. [PMC free article] [PubMed] [Google Scholar]
  70. Vellieux F. M., Hajdu J., Verlinde C. L., Groendijk H., Read R. J., Greenhough T. J., Campbell J. W., Kalk K. H., Littlechild J. A., Watson H. C. Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2355–2359. doi: 10.1073/pnas.90.6.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Verlinde C. L., Hol W. G. Structure-based drug design: progress, results and challenges. Structure. 1994 Jul 15;2(7):577–587. doi: 10.1016/s0969-2126(00)00060-5. [DOI] [PubMed] [Google Scholar]
  72. Verlinde C. L., Noble M. E., Kalk K. H., Groendijk H., Wierenga R. K., Hol W. G. Anion binding at the active site of trypanosomal triosephosphate isomerase. Monohydrogen phosphate does not mimic sulphate. Eur J Biochem. 1991 May 23;198(1):53–57. doi: 10.1111/j.1432-1033.1991.tb15985.x. [DOI] [PubMed] [Google Scholar]
  73. Verlinde C. L., Rudenko G., Hol W. G. In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. J Comput Aided Mol Des. 1992 Apr;6(2):131–147. doi: 10.1007/BF00129424. [DOI] [PubMed] [Google Scholar]
  74. Walsh C. T. Vancomycin resistance: decoding the molecular logic. Science. 1993 Jul 16;261(5119):308–309. doi: 10.1126/science.8392747. [DOI] [PubMed] [Google Scholar]
  75. Wang C. C. Parasite enzymes as potential targets for antiparasitic chemotherapy. J Med Chem. 1984 Jan;27(1):1–9. doi: 10.1021/jm00367a001. [DOI] [PubMed] [Google Scholar]
  76. Whelan J. S., Davis C. L., Rule S., Ranson M., Smith O. P., Mehta A. B., Catovsky D., Rohatiner A. Z., Lister T. A. Fludarabine phosphate for the treatment of low grade lymphoid malignancy. Br J Cancer. 1991 Jul;64(1):120–123. doi: 10.1038/bjc.1991.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Whittle P. J., Blundell T. L. Protein structure--based drug design. Annu Rev Biophys Biomol Struct. 1994;23:349–375. doi: 10.1146/annurev.bb.23.060194.002025. [DOI] [PubMed] [Google Scholar]
  78. Wierenga R. K., Kalk K. H., Hol W. G. Structure determination of the glycosomal triosephosphate isomerase from Trypanosoma brucei brucei at 2.4 A resolution. J Mol Biol. 1987 Nov 5;198(1):109–121. doi: 10.1016/0022-2836(87)90461-x. [DOI] [PubMed] [Google Scholar]
  79. Wierenga R. K., Noble M. E., Vriend G., Nauche S., Hol W. G. Refined 1.83 A structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J Mol Biol. 1991 Aug 20;220(4):995–1015. doi: 10.1016/0022-2836(91)90368-g. [DOI] [PubMed] [Google Scholar]
  80. Wu H. Y., Russell M. W. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun. 1993 Jan;61(1):314–322. doi: 10.1128/iai.61.1.314-322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES