Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Oct;3(10):1858–1870. doi: 10.1002/pro.5560031025

Multiple protein structure alignment.

W R Taylor 1, T P Flores 1, C A Orengo 1
PMCID: PMC2142613  PMID: 7849601

Abstract

A method was developed to compare protein structures and to combine them into a multiple structure consensus. Previous methods of multiple structure comparison have only concatenated pairwise alignments or produced a consensus structure by averaging coordinate sets. The current method is a fusion of the fast structure comparison program SSAP and the multiple sequence alignment program MULTAL. As in MULTAL, structures are progressively combined, producing intermediate consensus structures that are compared directly to each other and all remaining single structures. This leads to a hierarchic "condensation," continually evaluated in the light of the emerging conserved core regions. Following the SSAP approach, all interatomic vectors were retained with well-conserved regions distinguished by coherent vector bundles (the structural equivalent of a conserved sequence position). Each bundle of vectors is summarized by a resultant, whereas vector coherence is captured in an error term, which is the only distinction between conserved and variable positions. Resultant vectors are used directly in the comparison, which is weighted by their error values, giving greater importance to the matching of conserved positions. The resultant vectors and their errors can also be used directly in molecular modeling. Applications of the method were assessed by the quality of the resulting sequence alignments, phylogenetic tree construction, and databank scanning with the consensus. Visual assessment of the structural superpositions and consensus structure for various well-characterized families confirmed that the consensus had identified a reasonable core.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad-Zapatero C., Griffith J. P., Sussman J. L., Rossmann M. G. Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. J Mol Biol. 1987 Dec 5;198(3):445–467. doi: 10.1016/0022-2836(87)90293-2. [DOI] [PubMed] [Google Scholar]
  2. Barton G. J., Sternberg M. J. A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. J Mol Biol. 1987 Nov 20;198(2):327–337. doi: 10.1016/0022-2836(87)90316-0. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  5. Braun W., Go N. Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. J Mol Biol. 1985 Dec 5;186(3):611–626. doi: 10.1016/0022-2836(85)90134-2. [DOI] [PubMed] [Google Scholar]
  6. Chen P., Schulze-Gahmen U., Stura E. A., Inglese J., Johnson D. L., Marolewski A., Benkovic S. J., Wilson I. A. Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3.0 A resolution. A target enzyme for chemotherapy. J Mol Biol. 1992 Sep 5;227(1):283–292. doi: 10.1016/0022-2836(92)90698-j. [DOI] [PubMed] [Google Scholar]
  7. Deisenhofer J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry. 1981 Apr 28;20(9):2361–2370. [PubMed] [Google Scholar]
  8. Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
  9. Farber G. K., Petsko G. A. The evolution of alpha/beta barrel enzymes. Trends Biochem Sci. 1990 Jun;15(6):228–234. doi: 10.1016/0968-0004(90)90035-a. [DOI] [PubMed] [Google Scholar]
  10. Flores T. P., Moss D. S., Thornton J. M. An algorithm for automatically generating protein topology cartoons. Protein Eng. 1994 Jan;7(1):31–37. doi: 10.1093/protein/7.1.31. [DOI] [PubMed] [Google Scholar]
  11. Fukuyama K., Wakabayashi S., Matsubara H., Rogers L. J. Tertiary structure of oxidized flavodoxin from an eukaryotic red alga Chondrus crispus at 2.35-A resolution. Localization of charged residues and implication for interaction with electron transfer partners. J Biol Chem. 1990 Sep 15;265(26):15804–15812. [PubMed] [Google Scholar]
  12. Furey W., Jr, Wang B. C., Yoo C. S., Sax M. Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 A resolution. J Mol Biol. 1983 Jul 5;167(3):661–692. doi: 10.1016/s0022-2836(83)80104-1. [DOI] [PubMed] [Google Scholar]
  13. Gamblin S. J., Davies G. J., Grimes J. M., Jackson R. M., Littlechild J. A., Watson H. C. Activity and specificity of human aldolases. J Mol Biol. 1991 Jun 20;219(4):573–576. doi: 10.1016/0022-2836(91)90650-u. [DOI] [PubMed] [Google Scholar]
  14. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  15. Hyde C. C., Ahmed S. A., Padlan E. A., Miles E. W., Davies D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem. 1988 Nov 25;263(33):17857–17871. [PubMed] [Google Scholar]
  16. Johnson M. S., Overington J. P., Blundell T. L. Alignment and searching for common protein folds using a data bank of structural templates. J Mol Biol. 1993 Jun 5;231(3):735–752. doi: 10.1006/jmbi.1993.1323. [DOI] [PubMed] [Google Scholar]
  17. Johnson M. S., Sali A., Blundell T. L. Phylogenetic relationships from three-dimensional protein structures. Methods Enzymol. 1990;183:670–690. doi: 10.1016/0076-6879(90)83044-a. [DOI] [PubMed] [Google Scholar]
  18. Jones T. A., Thirup S. Using known substructures in protein model building and crystallography. EMBO J. 1986 Apr;5(4):819–822. doi: 10.1002/j.1460-2075.1986.tb04287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  20. Kuntz I. D., Thomason J. F., Oshiro C. M. Distance geometry. Methods Enzymol. 1989;177:159–204. doi: 10.1016/0076-6879(89)77011-7. [DOI] [PubMed] [Google Scholar]
  21. Leahy D. J., Axel R., Hendrickson W. A. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 A resolution. Cell. 1992 Mar 20;68(6):1145–1162. doi: 10.1016/0092-8674(92)90085-q. [DOI] [PubMed] [Google Scholar]
  22. Lesk A. M., Brändén C. I., Chothia C. Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet. Proteins. 1989;5(2):139–148. doi: 10.1002/prot.340050208. [DOI] [PubMed] [Google Scholar]
  23. Marquart M., Deisenhofer J., Huber R., Palm W. Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 A and 1.0 A resolution. J Mol Biol. 1980 Aug 25;141(4):369–391. doi: 10.1016/0022-2836(80)90252-1. [DOI] [PubMed] [Google Scholar]
  24. McLachlan A. D. Gene duplications in the structural evolution of chymotrypsin. J Mol Biol. 1979 Feb 15;128(1):49–79. doi: 10.1016/0022-2836(79)90308-5. [DOI] [PubMed] [Google Scholar]
  25. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  26. Orengo C. A., Brown N. P., Taylor W. R. Fast structure alignment for protein databank searching. Proteins. 1992 Oct;14(2):139–167. doi: 10.1002/prot.340140203. [DOI] [PubMed] [Google Scholar]
  27. Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
  28. Orengo C. A., Taylor W. R. A local alignment method for protein structure motifs. J Mol Biol. 1993 Oct 5;233(3):488–497. doi: 10.1006/jmbi.1993.1526. [DOI] [PubMed] [Google Scholar]
  29. Orengo C. A., Taylor W. R. A rapid method of protein structure alignment. J Theor Biol. 1990 Dec 21;147(4):517–551. doi: 10.1016/s0022-5193(05)80263-2. [DOI] [PubMed] [Google Scholar]
  30. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pattabiraman N., Ward K. B. Crepe-ribbon representation for protein structures: comparison of phospholipases A2. J Mol Graph. 1991 Mar;9(1):3-10, 33. doi: 10.1016/0263-7855(91)80026-v. [DOI] [PubMed] [Google Scholar]
  32. Pickett S. D., Saqi M. A., Sternberg M. J. Evaluation of the sequence template method for protein structure prediction. Discrimination of the (beta/alpha)8-barrel fold. J Mol Biol. 1992 Nov 5;228(1):170–187. doi: 10.1016/0022-2836(92)90499-a. [DOI] [PubMed] [Google Scholar]
  33. Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
  34. Russell R. B., Barton G. J. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins. 1992 Oct;14(2):309–323. doi: 10.1002/prot.340140216. [DOI] [PubMed] [Google Scholar]
  35. Sali A., Blundell T. L. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol. 1990 Mar 20;212(2):403–428. doi: 10.1016/0022-2836(90)90134-8. [DOI] [PubMed] [Google Scholar]
  36. Saul F. A., Amzel L. M., Poljak R. J. Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin new at 2.0 A resolution. J Biol Chem. 1978 Jan 25;253(2):585–597. [PubMed] [Google Scholar]
  37. Skarzyński T., Moody P. C., Wonacott A. J. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution. J Mol Biol. 1987 Jan 5;193(1):171–187. doi: 10.1016/0022-2836(87)90635-8. [DOI] [PubMed] [Google Scholar]
  38. Smith T. F., Waterman M. S. Identification of common molecular subsequences. J Mol Biol. 1981 Mar 25;147(1):195–197. doi: 10.1016/0022-2836(81)90087-5. [DOI] [PubMed] [Google Scholar]
  39. Smith W. W., Burnett R. M., Darling G. D., Ludwig M. L. Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state. J Mol Biol. 1977 Nov 25;117(1):195–225. doi: 10.1016/0022-2836(77)90031-6. [DOI] [PubMed] [Google Scholar]
  40. Sutcliffe M. J., Haneef I., Carney D., Blundell T. L. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 Oct-Nov;1(5):377–384. doi: 10.1093/protein/1.5.377. [DOI] [PubMed] [Google Scholar]
  41. Taylor W. R. Hierarchical method to align large numbers of biological sequences. Methods Enzymol. 1990;183:456–474. doi: 10.1016/0076-6879(90)83031-4. [DOI] [PubMed] [Google Scholar]
  42. Taylor W. R., Orengo C. A. Protein structure alignment. J Mol Biol. 1989 Jul 5;208(1):1–22. doi: 10.1016/0022-2836(89)90084-3. [DOI] [PubMed] [Google Scholar]
  43. Taylor W. R. Protein fold refinement: building models from idealized folds using motif constraints and multiple sequence data. Protein Eng. 1993 Aug;6(6):593–604. doi: 10.1093/protein/6.6.593. [DOI] [PubMed] [Google Scholar]
  44. Volz K., Matsumura P. Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J Biol Chem. 1991 Aug 15;266(23):15511–15519. doi: 10.2210/pdb3chy/pdb. [DOI] [PubMed] [Google Scholar]
  45. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watt W., Tulinsky A., Swenson R. P., Watenpaugh K. D. Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. J Mol Biol. 1991 Mar 5;218(1):195–208. doi: 10.1016/0022-2836(91)90884-9. [DOI] [PubMed] [Google Scholar]
  47. Wierenga R. K., Kalk K. H., Hol W. G. Structure determination of the glycosomal triosephosphate isomerase from Trypanosoma brucei brucei at 2.4 A resolution. J Mol Biol. 1987 Nov 5;198(1):109–121. doi: 10.1016/0022-2836(87)90461-x. [DOI] [PubMed] [Google Scholar]
  48. Wilmanns M., Priestle J. P., Niermann T., Jansonius J. N. Three-dimensional structure of the bifunctional enzyme phosphoribosylanthranilate isomerase: indoleglycerolphosphate synthase from Escherichia coli refined at 2.0 A resolution. J Mol Biol. 1992 Jan 20;223(2):477–507. doi: 10.1016/0022-2836(92)90665-7. [DOI] [PubMed] [Google Scholar]
  49. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]
  50. de Vlieg J., Scheek R. M., van Gunsteren W. F., Berendsen H. J., Kaptein R., Thomason J. Combined procedure of distance geometry and restrained molecular dynamics techniques for protein structure determination from nuclear magnetic resonance data: application to the DNA binding domain of lac repressor from Escherichia coli. Proteins. 1988;3(4):209–218. doi: 10.1002/prot.340030402. [DOI] [PubMed] [Google Scholar]
  51. la Cour T. F., Nyborg J., Thirup S., Clark B. F. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J. 1985 Sep;4(9):2385–2388. doi: 10.1002/j.1460-2075.1985.tb03943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES