Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Oct;3(10):1644–1650. doi: 10.1002/pro.5560031004

The three-dimensional structures of mutants of porphobilinogen deaminase: toward an understanding of the structural basis of acute intermittent porphyria.

P D Brownlie 1, R Lambert 1, G V Louie 1, P M Jordan 1, T L Blundell 1, M J Warren 1, J B Cooper 1, S P Wood 1
PMCID: PMC2142616  PMID: 7849582

Abstract

Mutations in the human gene for the enzyme porphobilinogen deaminase give rise to an inherited disease of heme biosynthesis, acute intermittent porphyria. Knowledge of the 3-dimensional structure of human porphobilinogen deaminase, based on the structure of the bacterial enzyme, allows correlation of structure with gene organization and leads to an understanding of the relationship between mutations in the gene, structural and functional changes of the enzyme, and the symptoms of the disease. Most mutations occur in exons 10 and 12, often changing amino acids in the active site. Several of these are shown to be involved in binding the primer or substrate; none modifies Asp 84, which is essential for catalytic activity.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brennan M. J., Cantrill R. C., Kramer S. Effect of delta-aminolaevulinic acid on GABA receptor binding in synaptic plasma membranes. Int J Biochem. 1980;12(5-6):833–835. doi: 10.1016/0020-711x(80)90172-x. [DOI] [PubMed] [Google Scholar]
  2. Chretien S., Dubart A., Beaupain D., Raich N., Grandchamp B., Rosa J., Goossens M., Romeo P. H. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci U S A. 1988 Jan;85(1):6–10. doi: 10.1073/pnas.85.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delfau M. H., Picat C., De Rooij F., Voortman G., Deybach J. C., Nordmann Y., Grandchamp B. Molecular heterogeneity of acute intermittent porphyria: identification of four additional mutations resulting in the CRIM-negative subtype of the disease. Am J Hum Genet. 1991 Aug;49(2):421–428. [PMC free article] [PubMed] [Google Scholar]
  4. Delfau M. H., Picat C., de Rooij F. W., Hamer K., Bogard M., Wilson J. H., Deybach J. C., Nordmann Y., Grandchamp B. Two different point G to A mutations in exon 10 of the porphobilinogen deaminase gene are responsible for acute intermittent porphyria. J Clin Invest. 1990 Nov;86(5):1511–1516. doi: 10.1172/JCI114869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grandchamp B., De Verneuil H., Beaumont C., Chretien S., Walter O., Nordmann Y. Tissue-specific expression of porphobilinogen deaminase. Two isoenzymes from a single gene. Eur J Biochem. 1987 Jan 2;162(1):105–110. doi: 10.1111/j.1432-1033.1987.tb10548.x. [DOI] [PubMed] [Google Scholar]
  6. Grandchamp B., Picat C., Kauppinen R., Mignotte V., Peltonen L., Mustajoki P., Roméo P. H., Goossens M., Nordmann Y. Molecular analysis of acute intermittent porphyria in a Finnish family with normal erythrocyte porphobilinogen deaminase. Eur J Clin Invest. 1989 Oct;19(5):415–418. doi: 10.1111/j.1365-2362.1989.tb00252.x. [DOI] [PubMed] [Google Scholar]
  7. Grandchamp B., Picat C., Mignotte V., Wilson J. H., Te Velde K., Sandkuyl L., Roméo P. H., Goossens M., Nordmann Y. Tissue-specific splicing mutation in acute intermittent porphyria. Proc Natl Acad Sci U S A. 1989 Jan;86(2):661–664. doi: 10.1073/pnas.86.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grandchamp B., Picat C., de Rooij F., Beaumont C., Wilson P., Deybach J. C., Nordmann Y. A point mutation G----A in exon 12 of the porphobilinogen deaminase gene results in exon skipping and is responsible for acute intermittent porphyria. Nucleic Acids Res. 1989 Aug 25;17(16):6637–6649. doi: 10.1093/nar/17.16.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gu X. F., de Rooij F., Voortman G., Te Velde K., Nordmann Y., Grandchamp B. High frequency of mutations in exon 10 of the porphobilinogen deaminase gene in patients with a CRIM-positive subtype of acute intermittent porphyria. Am J Hum Genet. 1992 Sep;51(3):660–665. [PMC free article] [PubMed] [Google Scholar]
  10. Jordan P. M., Warren M. J. Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett. 1987 Dec 10;225(1-2):87–92. doi: 10.1016/0014-5793(87)81136-5. [DOI] [PubMed] [Google Scholar]
  11. Jordan P. M., Woodcock S. C. Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation. Biochem J. 1991 Dec 1;280(Pt 2):445–449. doi: 10.1042/bj2800445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lander M., Pitt A. R., Alefounder P. R., Bardy D., Abell C., Battersby A. R. Studies on the mechanism of hydroxymethylbilane synthase concerning the role of arginine residues in substrate binding. Biochem J. 1991 Apr 15;275(Pt 2):447–452. doi: 10.1042/bj2750447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee J. S., Anvret M. Identification of the most common mutation within the porphobilinogen deaminase gene in Swedish patients with acute intermittent porphyria. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10912–10915. doi: 10.1073/pnas.88.23.10912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Llewellyn D. H., Smyth S. J., Elder G. H., Hutchesson A. C., Rattenbury J. M., Smith M. F. Homozygous acute intermittent porphyria: compound heterozygosity for adjacent base transitions in the same codon of the porphobilinogen deaminase gene. Hum Genet. 1992 Apr;89(1):97–98. doi: 10.1007/BF00207051. [DOI] [PubMed] [Google Scholar]
  15. Louie G. V., Brownlie P. D., Lambert R., Cooper J. B., Blundell T. L., Wood S. P., Warren M. J., Woodcock S. C., Jordan P. M. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature. 1992 Sep 3;359(6390):33–39. doi: 10.1038/359033a0. [DOI] [PubMed] [Google Scholar]
  16. Mgone C. S., Lanyon W. G., Moore M. R., Connor J. M. Detection of seven point mutations in the porphobilinogen deaminase gene in patients with acute intermittent porphyria, by direct sequencing of in vitro amplified cDNA. Hum Genet. 1992 Sep-Oct;90(1-2):12–16. doi: 10.1007/BF00210738. [DOI] [PubMed] [Google Scholar]
  17. Mgone C. S., Lanyon W. G., Moore M. R., Louie G. V., Connor J. M. Detection of a high mutation frequency in exon 12 of the porphobilinogen deaminase gene in patients with acute intermittent porphyria. Hum Genet. 1993 Dec;92(6):619–622. doi: 10.1007/BF00420949. [DOI] [PubMed] [Google Scholar]
  18. Mgone C. S., Lanyon W. G., Moore M. R., Louie G. V., Connor J. M. Identification of five novel mutations in the porphobilinogen deaminase gene. Hum Mol Genet. 1994 May;3(5):809–811. doi: 10.1093/hmg/3.5.809. [DOI] [PubMed] [Google Scholar]
  19. Nordmann Y., de Verneuil H., Deybach J. C., Delfau M. H., Grandchamp B. Molecular genetics of porphyrias. Ann Med. 1990 Dec;22(6):387–391. doi: 10.3109/07853899009147275. [DOI] [PubMed] [Google Scholar]
  20. Overington J., Johnson M. S., Sali A., Blundell T. L. Tertiary structural constraints on protein evolutionary diversity: templates, key residues and structure prediction. Proc Biol Sci. 1990 Aug 22;241(1301):132–145. doi: 10.1098/rspb.1990.0077. [DOI] [PubMed] [Google Scholar]
  21. Picat C., Bourgeois F., Grandchamp B. PCR detection of a C/T polymorphism in exon 1 of the porphobilinogen deaminase gene (PBGD). Nucleic Acids Res. 1991 Sep 25;19(18):5099–5099. doi: 10.1093/nar/19.18.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raich N., Romeo P. H., Dubart A., Beaupain D., Cohen-Solal M., Goossens M. Molecular cloning and complete primary sequence of human erythrocyte porphobilinogen deaminase. Nucleic Acids Res. 1986 Aug 11;14(15):5955–5968. doi: 10.1093/nar/14.15.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Scobie G. A., Llewellyn D. H., Urquhart A. J., Smyth S. J., Kalsheker N. A., Harrison P. R., Elder G. H. Acute intermittent porphyria caused by a C----T mutation that produces a stop codon in the porphobilinogen deaminase gene. Hum Genet. 1990 Oct;85(6):631–634. doi: 10.1007/BF00193588. [DOI] [PubMed] [Google Scholar]
  24. Scott A. I., Clemens K. R., Stolowich N. J., Santander P. J., Gonzalez M. D., Roessner C. A. Reconstitution of apo-porphobilinogen deaminase: structural changes induced by cofactor binding. FEBS Lett. 1989 Jan 2;242(2):319–324. doi: 10.1016/0014-5793(89)80493-4. [DOI] [PubMed] [Google Scholar]
  25. Srinivasan N., Blundell T. L. An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng. 1993 Jul;6(5):501–512. doi: 10.1093/protein/6.5.501. [DOI] [PubMed] [Google Scholar]
  26. Wang A. L., Arredondo-Vega F. X., Giampietro P. F., Smith M., Anderson W. F., Desnick R. J. Regional gene assignment of human porphobilinogen deaminase and esterase A4 to chromosome 11q23 leads to 11qter. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5734–5738. doi: 10.1073/pnas.78.9.5734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Warren M. J., Jordan P. M. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase. Biochemistry. 1988 Dec 13;27(25):9020–9030. doi: 10.1021/bi00425a021. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES