Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Oct;3(10):1788–1805. doi: 10.1002/pro.5560031019

Template-assembled melittin: structural and functional characterization of a designed, synthetic channel-forming protein.

M Pawlak 1, U Meseth 1, B Dhanapal 1, M Mutter 1, H Vogel 1
PMCID: PMC2142622  PMID: 7531528

Abstract

Template-assembled proteins (TASPs) comprising 4 peptide blocks, each of either the natural melittin sequence (melittin-TASP) or of a truncated melittin sequence (amino acids 6-26, melittin6-26-TASP), C-terminally linked to a (linear or cyclic) 10-amino acid template were synthesized and characterized, structurally by CD, by fluorescence spectroscopy, and by monolayer experiments, and functionally, by electrical conductance measurements on planar bilayers and release experiments on dye-loaded vesicles. Melittin-TASP and the truncated analogue preferentially adopt alpha-helical structures in methanol (56% and 52%, respectively) as in lipid membranes. Unlike in methanol, the melittin-TASP self-aggregates in water. On an air-water interface, the differently sized molecules can be self-assembled and compressed to a compact structure with a molecular area of around 600 A2, compatible with a 4-helix bundle preferentially oriented perpendicular to the interface. The proteins reveal a strong affinity for lipid membranes. A partition coefficient of 1.5 x 10(9) M-1 was evaluated from changes of the Trp fluorescence spectra of the TASP in water and in the lipid bilayer. In planar lipid bilayers, TASP molecules are able to form defined ion channels, exhibiting a small single-channel conductance of 7 pS (in 1 M NaCl). With increasing protein concentration in the lipid bilayer, additional, larger conductance states of up to 1 nS were observed. These states are likely to be formed by aggregated TASP structures as inferred from a strongly voltage-dependent channel activity on membranes of large area. In this respect, melittin-TASP reveals channel features of the native peptide, but with a considerably lower variation in the size of the channel states. Compared to the free peptide, template-assembled melittin has a much higher membrane activity: it is about 100 times more effective in channel formation and 20 times more effective in releasing dye molecules from lipid vesicles. This demonstrates that the lytic properties are not solely related to channel formation.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Stauffer D. A., Xu M., Karlin A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science. 1992 Oct 9;258(5080):307–310. doi: 10.1126/science.1384130. [DOI] [PubMed] [Google Scholar]
  2. Bazzo R., Tappin M. J., Pastore A., Harvey T. S., Carver J. A., Campbell I. D. The structure of melittin. A 1H-NMR study in methanol. Eur J Biochem. 1988 Apr 5;173(1):139–146. doi: 10.1111/j.1432-1033.1988.tb13977.x. [DOI] [PubMed] [Google Scholar]
  3. Beschiaschvili G., Baeuerle H. D. Effective charge of melittin upon interaction with POPC vesicles. Biochim Biophys Acta. 1991 Sep 30;1068(2):195–200. doi: 10.1016/0005-2736(91)90210-y. [DOI] [PubMed] [Google Scholar]
  4. Beschiaschvili G., Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990 Jan 9;29(1):52–58. doi: 10.1021/bi00453a007. [DOI] [PubMed] [Google Scholar]
  5. Bezrukov S. M., Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J. 1993 Jan;64(1):16–25. doi: 10.1016/S0006-3495(93)81336-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
  7. Chung L. A., Lear J. D., DeGrado W. F. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry. 1992 Jul 21;31(28):6608–6616. doi: 10.1021/bi00143a035. [DOI] [PubMed] [Google Scholar]
  8. Coronado R., Latorre R. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J. 1983 Aug;43(2):231–236. doi: 10.1016/S0006-3495(83)84343-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  10. Dargent B., Hofmann W., Pattus F., Rosenbusch J. P. The selectivity filter of voltage-dependent channels formed by phosphoporin (PhoE protein) from E. coli. EMBO J. 1986 Apr;5(4):773–778. doi: 10.1002/j.1460-2075.1986.tb04280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeGrado W. F., Musso G. F., Lieber M., Kaiser E. T., Kézdy F. J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J. 1982 Jan;37(1):329–338. doi: 10.1016/S0006-3495(82)84681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  13. Duclohier H., Molle G., Spach G. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J. 1989 Nov;56(5):1017–1021. doi: 10.1016/S0006-3495(89)82746-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Durell S. R., Guy H. R. Atomic scale structure and functional models of voltage-gated potassium channels. Biophys J. 1992 Apr;62(1):238–250. doi: 10.1016/S0006-3495(92)81809-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gordon L. G., Haydon D. A. The unit conductance channel of alamethicin. Biochim Biophys Acta. 1972 Mar 17;255(3):1014–1018. doi: 10.1016/0005-2736(72)90415-4. [DOI] [PubMed] [Google Scholar]
  16. Grove A., Tomich J. M., Iwamoto T., Montal M. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels. Protein Sci. 1993 Nov;2(11):1918–1930. doi: 10.1002/pro.5560021113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Görne-Tschelnokow U., Strecker A., Kaduk C., Naumann D., Hucho F. The transmembrane domains of the nicotinic acetylcholine receptor contain alpha-helical and beta structures. EMBO J. 1994 Jan 15;13(2):338–341. doi: 10.1002/j.1460-2075.1994.tb06266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hanke W., Methfessel C., Wilmsen H. U., Katz E., Jung G., Boheim G. Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores. Biochim Biophys Acta. 1983 Jan 5;727(1):108–114. doi: 10.1016/0005-2736(83)90374-7. [DOI] [PubMed] [Google Scholar]
  19. Imoto K., Busch C., Sakmann B., Mishina M., Konno T., Nakai J., Bujo H., Mori Y., Fukuda K., Numa S. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature. 1988 Oct 13;335(6191):645–648. doi: 10.1038/335645a0. [DOI] [PubMed] [Google Scholar]
  20. Knecht R., Chang J. Y. Liquid chromatographic determination of amino acids after gas-phase hydrolysis and derivatization with (dimethylamino)azobenzenesulfonyl chloride. Anal Chem. 1986 Oct;58(12):2375–2379. doi: 10.1021/ac00125a006. [DOI] [PubMed] [Google Scholar]
  21. MUELLER P., RUDIN D. O., TIEN H. T., WESCOTT W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962 Jun 9;194:979–980. doi: 10.1038/194979a0. [DOI] [PubMed] [Google Scholar]
  22. Massey J. B., Pownall H. J. Thermodynamics of apolipoprotein-phospholipid association. Methods Enzymol. 1986;128:403–413. doi: 10.1016/0076-6879(86)28083-0. [DOI] [PubMed] [Google Scholar]
  23. Mellor I. R., Sansom M. S. Ion-channel properties of mastoparan, a 14-residue peptide from wasp venom, and of MP3, a 12-residue analogue. Proc R Soc Lond B Biol Sci. 1990 Apr 23;239(1296):383–400. doi: 10.1098/rspb.1990.0022. [DOI] [PubMed] [Google Scholar]
  24. Mellor I. R., Thomas D. H., Sansom M. S. Properties of ion channels formed by Staphylococcus aureus delta-toxin. Biochim Biophys Acta. 1988 Jul 21;942(2):280–294. doi: 10.1016/0005-2736(88)90030-2. [DOI] [PubMed] [Google Scholar]
  25. Menestrina G., Voges K. P., Jung G., Boheim G. Voltage-dependent channel formation by rods of helical polypeptides. J Membr Biol. 1986;93(2):111–132. doi: 10.1007/BF01870804. [DOI] [PubMed] [Google Scholar]
  26. Miller C. Potassium selectivity in proteins: oxygen cage or pi in the face? Science. 1993 Sep 24;261(5129):1692–1693. doi: 10.1126/science.8397443. [DOI] [PubMed] [Google Scholar]
  27. Montal M. Molecular anatomy and molecular design of channel proteins. FASEB J. 1990 Jun;4(9):2623–2635. doi: 10.1096/fasebj.4.9.1693348. [DOI] [PubMed] [Google Scholar]
  28. Montal M., Montal M. S., Tomich J. M. Synporins--synthetic proteins that emulate the pore structure of biological ionic channels. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6929–6933. doi: 10.1073/pnas.87.18.6929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Numa S. A molecular view of neurotransmitter receptors and ionic channels. Harvey Lect. 1987;83:121–165. [PubMed] [Google Scholar]
  31. Pawlak M., Kuhn A., Vogel H. Pf3 coat protein forms voltage-gated ion channels in planar lipid bilayers. Biochemistry. 1994 Jan 11;33(1):283–290. doi: 10.1021/bi00167a037. [DOI] [PubMed] [Google Scholar]
  32. Pawlak M., Stankowski S., Schwarz G. Melittin induced voltage-dependent conductance in DOPC lipid bilayers. Biochim Biophys Acta. 1991 Feb 11;1062(1):94–102. doi: 10.1016/0005-2736(91)90339-a. [DOI] [PubMed] [Google Scholar]
  33. Peled H., Shai Y. Membrane interaction and self-assembly within phospholipid membranes of synthetic segments corresponding to the H-5 region of the shaker K+ channel. Biochemistry. 1993 Aug 10;32(31):7879–7885. doi: 10.1021/bi00082a007. [DOI] [PubMed] [Google Scholar]
  34. Quay S. C., Condie C. C. Conformational studies of aqueous melittin: thermodynamic parameters of the monomer-tetramer self-association reaction. Biochemistry. 1983 Feb 1;22(3):695–700. doi: 10.1021/bi00272a026. [DOI] [PubMed] [Google Scholar]
  35. Rapaport D., Shai Y. Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J Biol Chem. 1991 Dec 15;266(35):23769–23775. [PubMed] [Google Scholar]
  36. Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
  37. Schwarz G., Blochmann U. Association of the wasp venom peptide mastoparan with electrically neutral lipid vesicles. Salt effects on partitioning and conformational state. FEBS Lett. 1993 Mar 1;318(2):172–176. doi: 10.1016/0014-5793(93)80015-m. [DOI] [PubMed] [Google Scholar]
  38. Schwarz G., Robert C. H. Pore formation kinetics in membranes, determined from the release of marker molecules out of liposomes or cells. Biophys J. 1990 Sep;58(3):577–583. doi: 10.1016/S0006-3495(90)82401-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwarz G., Stankowski S., Rizzo V. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Biochim Biophys Acta. 1986 Sep 25;861(1):141–151. doi: 10.1016/0005-2736(86)90573-0. [DOI] [PubMed] [Google Scholar]
  40. Stankowski S., Pawlak M., Kaisheva E., Robert C. H., Schwarz G. A combined study of aggregation, membrane affinity and pore activity of natural and modified melittin. Biochim Biophys Acta. 1991 Oct 14;1069(1):77–86. doi: 10.1016/0005-2736(91)90106-i. [DOI] [PubMed] [Google Scholar]
  41. Stankowski S. Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment. Biophys J. 1991 Aug;60(2):341–351. doi: 10.1016/S0006-3495(91)82059-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
  43. Talbot J. C., Dufourcq J., de Bony J., Faucon J. F., Lussan C. Conformational change and self association of monomeric melittin. FEBS Lett. 1979 Jun 1;102(1):191–193. doi: 10.1016/0014-5793(79)80957-6. [DOI] [PubMed] [Google Scholar]
  44. Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
  45. Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tosteson M. T., Alvarez O., Tosteson D. C. Peptides as promoters of ion-permeable channels. Regul Pept Suppl. 1985;4:39–45. doi: 10.1016/0167-0115(85)90216-2. [DOI] [PubMed] [Google Scholar]
  47. Tosteson M. T., Holmes S. J., Razin M., Tosteson D. C. Melittin lysis of red cells. J Membr Biol. 1985;87(1):35–44. doi: 10.1007/BF01870697. [DOI] [PubMed] [Google Scholar]
  48. Tosteson M. T., Tosteson D. C. The sting. Melittin forms channels in lipid bilayers. Biophys J. 1981 Oct;36(1):109–116. doi: 10.1016/S0006-3495(81)84719-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tuchscherer G., Servis C., Corradin G., Blum U., Rivier J., Mutter M. Total chemical synthesis, characterization, and immunological properties of an MHC class I model using the TASP concept for protein de novo design. Protein Sci. 1992 Oct;1(10):1377–1386. doi: 10.1002/pro.5560011017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Unwin N. Neurotransmitter action: opening of ligand-gated ion channels. Cell. 1993 Jan;72 (Suppl):31–41. doi: 10.1016/s0092-8674(05)80026-1. [DOI] [PubMed] [Google Scholar]
  51. Vogel H. Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry. 1987 Jul 14;26(14):4562–4572. doi: 10.1021/bi00388a060. [DOI] [PubMed] [Google Scholar]
  52. Vogel H. Incorporation of melittin into phosphatidylcholine bilayers. Study of binding and conformational changes. FEBS Lett. 1981 Nov 2;134(1):37–42. doi: 10.1016/0014-5793(81)80545-5. [DOI] [PubMed] [Google Scholar]
  53. Vogel H., Jähnig F. The structure of melittin in membranes. Biophys J. 1986 Oct;50(4):573–582. doi: 10.1016/S0006-3495(86)83497-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vogel H., Nilsson L., Rigler R., Meder S., Boheim G., Beck W., Kurth H. H., Jung G. Structural fluctuations between two conformational states of a transmembrane helical peptide are related to its channel-forming properties in planar lipid membranes. Eur J Biochem. 1993 Mar 1;212(2):305–313. doi: 10.1111/j.1432-1033.1993.tb17663.x. [DOI] [PubMed] [Google Scholar]
  55. Vogel H., Nilsson L., Rigler R., Voges K. P., Jung G. Structural fluctuations of a helical polypeptide traversing a lipid bilayer. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5067–5071. doi: 10.1073/pnas.85.14.5067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wade D., Andreu D., Mitchell S. A., Silveira A. M., Boman A., Boman H. G., Merrifield R. B. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res. 1992 Nov;40(5):429–436. doi: 10.1111/j.1399-3011.1992.tb00321.x. [DOI] [PubMed] [Google Scholar]
  57. Wade D., Boman A., Wåhlin B., Drain C. M., Andreu D., Boman H. G., Merrifield R. B. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4761–4765. doi: 10.1073/pnas.87.12.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science. 1991 Dec 13;254(5038):1627–1630. doi: 10.1126/science.1721242. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES