Abstract
Huperzine A, a potential agent for therapy in Alzheimer's disease and for prophylaxis of organophosphate toxicity, has recently been characterized as a reversible inhibitor of cholinesterases. To examine the specificity of this novel compound in more detail, we have examined the interaction of the 2 stereoisomers of Huperzine A with cholinesterases and site-specific mutants that detail the involvement of specific amino acid residues. Inhibition of fetal bovine serum acetylcholinesterase by (-)-Huperzine A was 35-fold more potent than (+)-Huperzine A, with KI values of 6.2 nM and 210 nM, respectively. In addition, (-)-Huperzine A was 88-fold more potent in inhibiting Torpedo acetylcholinesterase than (+)-Huperzine A, with KI values of 0.25 microM and 22 microM, respectively. Far larger KI values that did not differ between the 2 stereoisomers were observed with horse and human serum butyrylcholinesterases. Mammalian acetylcholinesterase, Torpedo acetylcholinesterase, and mammalian butyrylcholinesterase can be distinguished by the amino acid Tyr, Phe, or Ala in the 330 position, respectively. Studies with mouse acetylcholinesterase mutants, Tyr 337 (330) Phe and Tyr 337 (330) Ala yielded a difference in reactivity that closely mimicked the native enzymes. In contrast, mutation of the conserved Glu 199 residue to Gln in Torpedo acetylcholinesterase produced only a 3-fold increase in KI value for the binding of Huperzine A.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson S., Davis D. L., Dahlbäck H., Jörnvall H., Russell D. W. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem. 1989 May 15;264(14):8222–8229. [PubMed] [Google Scholar]
- Ashani Y., Peggins J. O., 3rd, Doctor B. P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem Biophys Res Commun. 1992 Apr 30;184(2):719–726. doi: 10.1016/0006-291x(92)90649-6. [DOI] [PubMed] [Google Scholar]
- De la Hoz D., Doctor B. P., Ralston J. S., Rush R. S., Wolfe A. D. A simplified procedure for the purification of large quantities of fetal bovine serum acetylcholinesterase. Life Sci. 1986 Jul 21;39(3):195–199. doi: 10.1016/0024-3205(86)90530-8. [DOI] [PubMed] [Google Scholar]
- Fournier D., Bride J. M., Hoffmann F., Karch F. Acetylcholinesterase. Two types of modifications confer resistance to insecticide. J Biol Chem. 1992 Jul 15;267(20):14270–14274. [PubMed] [Google Scholar]
- Harel M., Sussman J. L., Krejci E., Bon S., Chanal P., Massoulié J., Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10827–10831. doi: 10.1073/pnas.89.22.10827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreienkamp H. J., Weise C., Raba R., Aaviksaar A., Hucho F. Anionic subsites of the catalytic center of acetylcholinesterase from Torpedo and from cobra venom. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6117–6121. doi: 10.1073/pnas.88.14.6117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKinney M., Miller J. H., Yamada F., Tuckmantel W., Kozikowski A. P. Potencies and stereoselectivities of enantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur J Pharmacol. 1991 Oct 15;203(2):303–305. doi: 10.1016/0014-2999(91)90730-e. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Flashner Y., Leitner M., Segall Y., Ariel N., Cohen S., Velan B., Shafferman A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993 Aug 15;268(23):17083–17095. [PubMed] [Google Scholar]
- Qian N., Kovach I. M. Key active site residues in the inhibition of acetylcholinesterases by soman. FEBS Lett. 1993 Dec 27;336(2):263–266. doi: 10.1016/0014-5793(93)80816-d. [DOI] [PubMed] [Google Scholar]
- Radić Z., Gibney G., Kawamoto S., MacPhee-Quigley K., Bongiorno C., Taylor P. Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants. Biochemistry. 1992 Oct 13;31(40):9760–9767. doi: 10.1021/bi00155a032. [DOI] [PubMed] [Google Scholar]
- Radić Z., Pickering N. A., Vellom D. C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993 Nov 16;32(45):12074–12084. doi: 10.1021/bi00096a018. [DOI] [PubMed] [Google Scholar]
- Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D., Ariel N. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 1992 Oct;11(10):3561–3568. doi: 10.1002/j.1460-2075.1992.tb05439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Vellom D. C., Radić Z., Li Y., Pickering N. A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993 Jan 12;32(1):12–17. doi: 10.1021/bi00052a003. [DOI] [PubMed] [Google Scholar]