Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Oct;3(10):1726–1730. doi: 10.1002/pro.5560031011

Electrostatic effects in the control of glycogen phosphorylase by phosphorylation.

L N Johnson 1, D Barford 1
PMCID: PMC2142624  PMID: 7849589

Abstract

Electrostatic effects are important in the initial activation mechanism of glycogen phosphorylase by phosphorylation. Analysis of the electrostatic surface potential of glycogen phosphorylase with the program GRASP shows that in the unphosphorylated state, the N-terminal 20 residues, which include a number of basic amino acids, are located close to a position on the surface of the molecule that is highly acidic. Upon phosphorylation by phosphorylase kinase at Ser 14, the N-terminal residues change their position and conformation so that the Ser-P is directed away from the acidic patch and to an intersubunit site where 2 arginines bind the phosphate. This recognition site is created through tertiary and quaternary structural changes that accompany the activation mechanism.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barford D., Hu S. H., Johnson L. N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol. 1991 Mar 5;218(1):233–260. doi: 10.1016/0022-2836(91)90887-c. [DOI] [PubMed] [Google Scholar]
  2. Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
  3. Bossemeyer D., Engh R. A., Kinzel V., Ponstingl H., Huber R. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 1993 Mar;12(3):849–859. doi: 10.1002/j.1460-2075.1993.tb05725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Browner M. F., Hackos D., Fletterick R. Identification of the molecular trigger for allosteric activation in glycogen phosphorylase. Nat Struct Biol. 1994 May;1(5):327–333. doi: 10.1038/nsb0594-327. [DOI] [PubMed] [Google Scholar]
  5. Browner M. F., Rasor P., Tugendreich S., Fletterick R. J. Temperature-sensitive production of rabbit muscle glycogen phosphorylase in Escherichia coli. Protein Eng. 1991 Feb;4(3):351–357. doi: 10.1093/protein/4.3.351. [DOI] [PubMed] [Google Scholar]
  6. Cohen P. Dissection of the protein phosphorylation cascades involved in insulin and growth factor action. Biochem Soc Trans. 1993 Aug;21(3):555–567. doi: 10.1042/bst0210555. [DOI] [PubMed] [Google Scholar]
  7. De Bondt H. L., Rosenblatt J., Jancarik J., Jones H. D., Morgan D. O., Kim S. H. Crystal structure of cyclin-dependent kinase 2. Nature. 1993 Jun 17;363(6430):595–602. doi: 10.1038/363595a0. [DOI] [PubMed] [Google Scholar]
  8. Dean A. M., Koshland D. E., Jr Electrostatic and steric contributions to regulation at the active site of isocitrate dehydrogenase. Science. 1990 Aug 31;249(4972):1044–1046. doi: 10.1126/science.2204110. [DOI] [PubMed] [Google Scholar]
  9. Hu S. H., Parker M. W., Lei J. Y., Wilce M. C., Benian G. M., Kemp B. E. Insights into autoregulation from the crystal structure of twitchin kinase. Nature. 1994 Jun 16;369(6481):581–584. doi: 10.1038/369581a0. [DOI] [PubMed] [Google Scholar]
  10. Hurley J. H., Dean A. M., Sohl J. L., Koshland D. E., Jr, Stroud R. M. Regulation of an enzyme by phosphorylation at the active site. Science. 1990 Aug 31;249(4972):1012–1016. doi: 10.1126/science.2204109. [DOI] [PubMed] [Google Scholar]
  11. Johnson L. N., Barford D. The effects of phosphorylation on the structure and function of proteins. Annu Rev Biophys Biomol Struct. 1993;22:199–232. doi: 10.1146/annurev.bb.22.060193.001215. [DOI] [PubMed] [Google Scholar]
  12. Johnson L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 1992 Mar;6(6):2274–2282. doi: 10.1096/fasebj.6.6.1544539. [DOI] [PubMed] [Google Scholar]
  13. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
  14. Knighton D. R., Zheng J. H., Ten Eyck L. F., Xuong N. H., Taylor S. S., Sowadski J. M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):414–420. doi: 10.1126/science.1862343. [DOI] [PubMed] [Google Scholar]
  15. Leonidas D. D., Oikonomakos N. G., Papageorgiou A. C. Sulphate activates phosphorylase b by binding to the Ser (P) site. Biochim Biophys Acta. 1991 Jan 29;1076(2):305–307. doi: 10.1016/0167-4838(91)90282-5. [DOI] [PubMed] [Google Scholar]
  16. Martin J. L., Johnson L. N., Withers S. G. Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry. 1990 Dec 4;29(48):10745–10757. doi: 10.1021/bi00500a005. [DOI] [PubMed] [Google Scholar]
  17. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  18. Roach P. J. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990 Sep;4(12):2961–2968. [PubMed] [Google Scholar]
  19. Soderling T. R. Protein kinases. Regulation by autoinhibitory domains. J Biol Chem. 1990 Feb 5;265(4):1823–1826. [PubMed] [Google Scholar]
  20. Sotiroudis T. G., Oikonomakos N. G., Evangelopoulos A. E. Effect of sulfated polysaccharides and sulfate anions on the AMP-dependent activity of phosphorylase b. Biochem Biophys Res Commun. 1979 Sep 12;90(1):234–239. doi: 10.1016/0006-291x(79)91615-2. [DOI] [PubMed] [Google Scholar]
  21. Sprang S. R., Acharya K. R., Goldsmith E. J., Stuart D. I., Varvill K., Fletterick R. J., Madsen N. B., Johnson L. N. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature. 1988 Nov 17;336(6196):215–221. doi: 10.1038/336215a0. [DOI] [PubMed] [Google Scholar]
  22. Taylor S. S., Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure. 1994 May 15;2(5):345–355. doi: 10.1016/s0969-2126(00)00036-8. [DOI] [PubMed] [Google Scholar]
  23. The Bohr effect and combination with organic phosphates. Nature. 1970 Nov 21;228(5273):734–739. doi: 10.1038/228734a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES