Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Nov;3(11):2104–2114. doi: 10.1002/pro.5560031124

A "parallel plate" electrostatic model for bimolecular rate constants applied to electron transfer proteins.

J A Watkins 1, M A Cusanovich 1, T E Meyer 1, G Tollin 1
PMCID: PMC2142629  PMID: 7703857

Abstract

A "parallel plate" model describing the electrostatic potential energy of protein-protein interactions is presented that provides an analytical representation of the effect of ionic strength on a biomolecular rate constant. The model takes into account the asymmetric distribution of charge on the surface of the protein and localized charges at the site of electron transfer that are modeled as elements of a parallel plate condenser. Both monopolar and dipolar interactions are included. Examples of simple (monophasic) and complex (biphasic) ionic strength dependencies obtained from experiments with several electron transfer protein systems are presented, all of which can be accommodated by the model. The simple cases do not require the use of both monopolar and dipolar terms (i.e., they can be fit well by either alone). The biphasic dependencies can be fit only by using dipolar and monopolar terms of opposite sign, which is physically unreasonable for the molecules considered. Alternatively, the high ionic strength portion of the complex dependencies can be fit using either the monopolar term alone or the complete equation; this assumes a model in which such behavior is a consequence of electron transfer mechanisms involving changes in orientation or site of reaction as the ionic strength is varied. Based on these analyses, we conclude that the principal applications of the model presented here are to provide information about the structural properties of intermediate electron transfer complexes and to quantify comparisons between related proteins or site-specific mutants. We also conclude that the relative contributions of monopolar and dipolar effects to protein electron transfer kinetics cannot be evaluated from experimental data by present approximations.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheddar G., Meyer T. E., Cusanovich M. A., Stout C. D., Tollin G. Redox protein electron-transfer mechanisms: electrostatic interactions as a determinant of reaction site in c-type cytochromes. Biochemistry. 1989 Jul 25;28(15):6318–6322. doi: 10.1021/bi00441a025. [DOI] [PubMed] [Google Scholar]
  2. Chen L., Durley R., Poliks B. J., Hamada K., Chen Z., Mathews F. S., Davidson V. L., Satow Y., Huizinga E., Vellieux F. M. Crystal structure of an electron-transfer complex between methylamine dehydrogenase and amicyanin. Biochemistry. 1992 Jun 2;31(21):4959–4964. doi: 10.1021/bi00136a006. [DOI] [PubMed] [Google Scholar]
  3. Chen L., Mathews F. S., Davidson V. L., Tegoni M., Rivetti C., Rossi G. L. Preliminary crystal structure studies of a ternary electron transfer complex between a quinoprotein, a blue copper protein, and a c-type cytochrome. Protein Sci. 1993 Feb;2(2):147–154. doi: 10.1002/pro.5560020203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Correll C. C., Ludwig M. L., Bruns C. M., Karplus P. A. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Protein Sci. 1993 Dec;2(12):2112–2133. doi: 10.1002/pro.5560021212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feinberg B. A., Ryan M. D. Molecular interpretation of kinetic-ionic strength effects. J Inorg Biochem. 1981 Nov;15(3):187–199. doi: 10.1016/s0162-0134(00)80154-3. [DOI] [PubMed] [Google Scholar]
  6. Hazzard J. T., McLendon G., Cusanovich M. A., Das G., Sherman F., Tollin G. Effects of amino acid replacements in yeast iso-1 cytochrome c on heme accessibility and intracomplex electron transfer in complexes with cytochrome c peroxidase. Biochemistry. 1988 Jun 14;27(12):4445–4451. doi: 10.1021/bi00412a035. [DOI] [PubMed] [Google Scholar]
  7. Hurley J. K., Salamon Z., Meyer T. E., Fitch J. C., Cusanovich M. A., Markley J. L., Cheng H., Xia B., Chae Y. K., Medina M. Amino acid residues in Anabaena ferredoxin crucial to interaction with ferredoxin-NADP+ reductase: site-directed mutagenesis and laser flash photolysis. Biochemistry. 1993 Sep 14;32(36):9346–9354. doi: 10.1021/bi00087a013. [DOI] [PubMed] [Google Scholar]
  8. Karplus P. A., Daniels M. J., Herriott J. R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science. 1991 Jan 4;251(4989):60–66. [PubMed] [Google Scholar]
  9. Mathews F. S., Chen Z. W., Bellamy H. D., McIntire W. S. Three-dimensional structure of p-cresol methylhydroxylase (flavocytochrome c) from Pseudomonas putida at 3.0-A resolution. Biochemistry. 1991 Jan 8;30(1):238–247. doi: 10.1021/bi00215a034. [DOI] [PubMed] [Google Scholar]
  10. Matthew J. B., Weber P. C., Salemme F. R., Richards F. M. Electrostatic orientation during electron transfer between flavodoxin and cytochrome c. Nature. 1983 Jan 13;301(5896):169–171. doi: 10.1038/301169a0. [DOI] [PubMed] [Google Scholar]
  11. Mauk M. R., Mauk A. G., Weber P. C., Matthew J. B. Electrostatic analysis of the interaction of cytochrome c with native and dimethyl ester heme substituted cytochrome b5. Biochemistry. 1986 Nov 4;25(22):7085–7091. doi: 10.1021/bi00370a049. [DOI] [PubMed] [Google Scholar]
  12. Meyer T. E., Bartsch R. G., Cusanovich M. A., Tollin G. Kinetics of photooxidation of soluble cytochromes, HiPIP, and azurin by the photosynthetic reaction center of the purple phototrophic bacterium Rhodopseudomonas viridis. Biochemistry. 1993 May 11;32(18):4719–4726. doi: 10.1021/bi00069a005. [DOI] [PubMed] [Google Scholar]
  13. Meyer T. E., Cheddar G., Bartsch R. G., Getzoff E. D., Cusanovich M. A., Tollin G. Kinetics of electron transfer between cytochromes c' and the semiquinones of free flavin and clostridial flavodoxin. Biochemistry. 1986 Mar 25;25(6):1383–1390. doi: 10.1021/bi00354a029. [DOI] [PubMed] [Google Scholar]
  14. Meyer T. E., Cusanovich M. A., Krogmann D. W., Bartsch R. G., Tollin G. Kinetics of reduction by free flavin semiquinones of algal cytochromes and plastocyanin. Arch Biochem Biophys. 1987 Nov 1;258(2):307–314. doi: 10.1016/0003-9861(87)90349-3. [DOI] [PubMed] [Google Scholar]
  15. Meyer T. E., Rivera M., Walker F. A., Mauk M. R., Mauk A. G., Cusanovich M. A., Tollin G. Laser flash photolysis studies of electron transfer to the cytochrome b5-cytochrome c complex. Biochemistry. 1993 Jan 19;32(2):622–627. doi: 10.1021/bi00053a030. [DOI] [PubMed] [Google Scholar]
  16. Meyer T. E., Watkins J. A., Przysiecki C. T., Tollin G., Cusanovich M. A. Electron-transfer reactions of photoreduced flavin analogues with c-type cytochromes: quantitation of steric and electrostatic factors. Biochemistry. 1984 Sep 25;23(20):4761–4767. doi: 10.1021/bi00315a035. [DOI] [PubMed] [Google Scholar]
  17. Meyer T. E., Zhao Z. G., Cusanovich M. A., Tollin G. Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin. Biochemistry. 1993 May 4;32(17):4552–4559. doi: 10.1021/bi00068a010. [DOI] [PubMed] [Google Scholar]
  18. Pan L. P., Hibdon S., Liu R. Q., Durham B., Millett F. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase. Biochemistry. 1993 Aug 24;32(33):8492–8498. doi: 10.1021/bi00084a014. [DOI] [PubMed] [Google Scholar]
  19. Rees D. C. Experimental evaluation of the effective dielectric constant of proteins. J Mol Biol. 1980 Aug 15;141(3):323–326. doi: 10.1016/0022-2836(80)90184-9. [DOI] [PubMed] [Google Scholar]
  20. Rickle G. K., Cusanovich M. A. The kinetics of photooxidation of c-type cytochromes by Rhodospirillum rubrum reaction centers. Arch Biochem Biophys. 1979 Oct 15;197(2):589–598. doi: 10.1016/0003-9861(79)90283-2. [DOI] [PubMed] [Google Scholar]
  21. Roberts V. A., Freeman H. C., Olson A. J., Tainer J. A., Getzoff E. D. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c. J Biol Chem. 1991 Jul 15;266(20):13431–13441. [PubMed] [Google Scholar]
  22. Salemme F. R. An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. J Mol Biol. 1976 Apr 15;102(3):563–568. doi: 10.1016/0022-2836(76)90334-x. [DOI] [PubMed] [Google Scholar]
  23. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  24. Shoup D., Lipari G., Szabo A. Diffusion-controlled bimolecular reaction rates. The effect of rotational diffusion and orientation constraints. Biophys J. 1981 Dec;36(3):697–714. doi: 10.1016/S0006-3495(81)84759-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shoup D., Szabo A. Role of diffusion in ligand binding to macromolecules and cell-bound receptors. Biophys J. 1982 Oct;40(1):33–39. doi: 10.1016/S0006-3495(82)84455-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simondsen R. P., Weber P. C., Salemme F. R., Tollin G. Transient kinetics of electron transfer reactions of flavodoxin: ionic strength dependence of semiquinone oxidation by cytochrome c, ferricyanide, and ferric ethylenediaminetetraacetic acid and computer modeling of reaction complexes. Biochemistry. 1982 Dec 7;21(25):6366–6375. doi: 10.1021/bi00268a008. [DOI] [PubMed] [Google Scholar]
  27. Tollin G., Hazzard J. T. Intra- and intermolecular electron transfer processes in redox proteins. Arch Biochem Biophys. 1991 May 15;287(1):1–7. doi: 10.1016/0003-9861(91)90380-2. [DOI] [PubMed] [Google Scholar]
  28. Tollin G., Hurley J. K., Hazzard J. T., Meyer T. E. Use of laser flash photolysis time-resolved spectrophotometry to investigate interprotein and intraprotein electron transfer mechanisms. Biophys Chem. 1993 Dec;48(2):259–279. doi: 10.1016/0301-4622(93)85014-9. [DOI] [PubMed] [Google Scholar]
  29. Van Leeuwen J. W. The ionic strength dependence of the rate of a reaction between two large proteins with a dipole moment. Biochim Biophys Acta. 1983 Mar 30;743(3):408–421. doi: 10.1016/0167-4838(83)90400-4. [DOI] [PubMed] [Google Scholar]
  30. Walker M. C., Pueyo J. J., Navarro J. A., Gómez-Moreno C., Tollin G. Laser flash photolysis studies of the kinetics of reduction of ferredoxins and ferredoxin-NADP+ reductases from Anabaena PCC 7119 and spinach: electrostatic effects on intracomplex electron transfer. Arch Biochem Biophys. 1991 Jun;287(2):351–358. doi: 10.1016/0003-9861(91)90489-6. [DOI] [PubMed] [Google Scholar]
  31. Weber P. C., Tollin G. Electrostatic interactions during electron transfer reactions between c-type cytochromes and flavodoxin. J Biol Chem. 1985 May 10;260(9):5568–5573. [PubMed] [Google Scholar]
  32. Wendoloski J. J., Matthew J. B., Weber P. C., Salemme F. R. Molecular dynamics of a cytochrome c-cytochrome b5 electron transfer complex. Science. 1987 Nov 6;238(4828):794–797. doi: 10.1126/science.2823387. [DOI] [PubMed] [Google Scholar]
  33. Wherland S., Gray H. B. Metalloprotein electron transfer reactions: analysis of reactivity of horse heart cytochrome c with inorganic complexes. Proc Natl Acad Sci U S A. 1976 Sep;73(9):2950–2954. doi: 10.1073/pnas.73.9.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Willie A., Stayton P. S., Sligar S. G., Durham B., Millett F. Genetic engineering of redox donor sites: measurement of intracomplex electron transfer between ruthenium-65-cytochrome b5 and cytochrome c. Biochemistry. 1992 Aug 18;31(32):7237–7242. doi: 10.1021/bi00147a005. [DOI] [PubMed] [Google Scholar]
  35. Zhou H. X. Boundary element solution of macromolecular electrostatics: interaction energy between two proteins. Biophys J. 1993 Aug;65(2):955–963. doi: 10.1016/S0006-3495(93)81094-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhou J. S., Kostić N. M. Photoinduced electron-transfer reaction in a ternary system involving zinc cytochrome c and plastocyanin. Interplay of monopolar and dipolar electrostatic interactions between metalloproteins. Biochemistry. 1992 Aug 25;31(33):7543–7550. doi: 10.1021/bi00148a015. [DOI] [PubMed] [Google Scholar]
  37. van Leeuwen J. W., Mofers F. J., Veerman E. C. The ionic strength dependence of the rate of a reaction between a small ion and a large ion with a dipole moment. Biochim Biophys Acta. 1981 Apr 13;635(2):434–439. doi: 10.1016/0005-2728(81)90041-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES