Abstract
Because an N-terminal alpha-helical (N-helix) arm and a KGK-triplet (residues 88KGK90) in the central helix of troponin-C (TnC) are missing in calmodulin, several recent studies have attempted to elucidate the structure-function correlations of these units. Presently, with a family of genetically manipulated derivatives especially developed for this study and tested on permeabilized isolated single skeletal muscle fiber segments, we explored the specificities of the amino acid residues within the N-helix and the KGK-triplet in TnC. Noticeably, the amino acid compositions vary between the N-helices of the cardiac and skeletal TnC isoforms. On the other hand, the KGK-triplet is located similarly in both TnC isoforms. We previously indicated that deletion of the N-helix (mutant delta Nt) diminishes the tension obtained on activation with maximal calcium, but the contractile function is revived by the superimposed deletion of the 88KGK90-triplet (mutant delta Nt delta KGK; see Gulati J, Babu A, Su H, Zhang YF, 1993, J Biol Chem 268:11685-11690). Using this functional test, we find that replacement of Gly-89 with a Leu or an Ala could also overcome the contractile defect associated with N-helix deletion. On the other hand, replacement of the skeletal TnC N-helix with cardiac type N-helix was unable to restore contractile function. The findings indicate a destabilizing influence of Gly-89 residue in skeletal TnC and suggest that the N-terminal arm in normal TnC serves to moderate this effect. Moreover, specificity of the N-helix between cardiac and skeletal TnCs raises the possibility that resultant structural disparities are also important for the functional distinctions of the TnC isoforms.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babu A., Rao V. G., Su H., Gulati J. Critical minimum length of the central helix in troponin C for the Ca2+ switch in muscular contraction. J Biol Chem. 1993 Sep 15;268(26):19232–19238. [PubMed] [Google Scholar]
- Babu A., Scordilis S. P., Sonnenblick E. H., Gulati J. The control of myocardial contraction with skeletal fast muscle troponin C. J Biol Chem. 1987 Apr 25;262(12):5815–5822. [PubMed] [Google Scholar]
- Babu A., Su H., Ryu Y., Gulati J. Determination of residue specificity in the EF-hand of troponin C for Ca2+ coordination, by genetic engineering. J Biol Chem. 1992 Aug 5;267(22):15469–15474. [PubMed] [Google Scholar]
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Brzeska H., Venyaminov SVu, Grabarek Z., Drabikowski W. Comparative studies on thermostability of calmodulin, skeletal muscle troponin C and their tryptic fragments. FEBS Lett. 1983 Mar 7;153(1):169–173. doi: 10.1016/0014-5793(83)80141-0. [DOI] [PubMed] [Google Scholar]
- Declercq J. P., Tinant B., Parello J., Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol. 1991 Aug 20;220(4):1017–1039. doi: 10.1016/0022-2836(91)90369-h. [DOI] [PubMed] [Google Scholar]
- Dobrowolski Z., Xu G. Q., Hitchcock-DeGregori S. E. Modified calcium-dependent regulatory function of troponin C central helix mutants. J Biol Chem. 1991 Mar 25;266(9):5703–5710. [PubMed] [Google Scholar]
- Grabarek Z., Tao T., Gergely J. Molecular mechanism of troponin-C function. J Muscle Res Cell Motil. 1992 Aug;13(4):383–393. doi: 10.1007/BF01738034. [DOI] [PubMed] [Google Scholar]
- Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
- Gulati J., Babu A., Su H. Functional delineation of the Ca(2+)-deficient EF-hand in cardiac muscle, with genetically engineered cardiac-skeletal chimeric troponin C. J Biol Chem. 1992 Dec 15;267(35):25073–25077. [PubMed] [Google Scholar]
- Gulati J., Babu A., Su H., Zhang Y. F. Identification of the regions conferring calmodulin-like properties to troponin C. J Biol Chem. 1993 Jun 5;268(16):11685–11690. [PubMed] [Google Scholar]
- Gulati J., Podolsky R. J. Contraction transients of skinned muscle fibers: effects of calcium and ionic strength. J Gen Physiol. 1978 Nov;72(5):701–715. doi: 10.1085/jgp.72.5.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulati J., Sonnenblick E., Babu A. The role of troponin C in the length dependence of Ca(2+)-sensitive force of mammalian skeletal and cardiac muscles. J Physiol. 1991 Sep;441:305–324. doi: 10.1113/jphysiol.1991.sp018753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hecht M. H., Sturtevant J. M., Sauer R. T. Stabilization of lambda repressor against thermal denaturation by site-directed Gly----Ala changes in alpha-helix 3. Proteins. 1986 Sep;1(1):43–46. doi: 10.1002/prot.340010108. [DOI] [PubMed] [Google Scholar]
- Herzberg O., James M. N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol. 1988 Oct 5;203(3):761–779. doi: 10.1016/0022-2836(88)90208-2. [DOI] [PubMed] [Google Scholar]
- Herzberg O., Moult J., James M. N. Calcium binding to skeletal muscle troponin C and the regulation of muscle contraction. Ciba Found Symp. 1986;122:120–144. doi: 10.1002/9780470513347.ch8. [DOI] [PubMed] [Google Scholar]
- Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Potter J. D. Detection of two classes of Ca2+ binding sites in troponin C with circular dichroism and tyrosine fluorescence. J Biol Chem. 1978 Jun 10;253(11):3775–3777. [PubMed] [Google Scholar]
- Kobayashi T., Tao T., Gergely J., Collins J. H. Structure of the troponin complex. Implications of photocross-linking of troponin I to troponin C thiol mutants. J Biol Chem. 1994 Feb 25;269(8):5725–5729. [PubMed] [Google Scholar]
- Levin J. M., Garnier J. Improvements in a secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool. Biochim Biophys Acta. 1988 Aug 10;955(3):283–295. doi: 10.1016/0167-4838(88)90206-3. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
- Murray A. C., Kay C. M. Hydrodynamic and optical properties of troponin A. Demonstration of a conformational change upon binding calcium ion. Biochemistry. 1972 Jul 4;11(14):2622–2627. doi: 10.1021/bi00764a012. [DOI] [PubMed] [Google Scholar]
- Preissner R., Bork P. On alpha-helices terminated by glycine. 1. Identification of common structural features. Biochem Biophys Res Commun. 1991 Oct 31;180(2):660–665. doi: 10.1016/s0006-291x(05)81116-7. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
- Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
- Reinach F. C., Karlsson R. Cloning, expression, and site-directed mutagenesis of chicken skeletal muscle troponin C. J Biol Chem. 1988 Feb 15;263(5):2371–2376. [PubMed] [Google Scholar]
- Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
- Roquet F., Declercq J. P., Tinant B., Rambaud J., Parello J. Crystal structure of the unique parvalbumin component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an alpha-parvalbumin. J Mol Biol. 1992 Feb 5;223(3):705–720. doi: 10.1016/0022-2836(92)90985-s. [DOI] [PubMed] [Google Scholar]
- Sheng Z. L., Francois J. M., Hitchcock-DeGregori S. E., Potter J. D. Effects of mutations in the central helix of troponin C on its biological activity. J Biol Chem. 1991 Mar 25;266(9):5711–5715. [PubMed] [Google Scholar]
- Smith L., Greenfield N. J., Hitchcock-DeGregori S. E. The effects of deletion of the amino-terminal helix on troponin C function and stability. J Biol Chem. 1994 Apr 1;269(13):9857–9863. [PubMed] [Google Scholar]
- Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
- Tsalkova T. N., Privalov P. L. Thermodynamic study of domain organization in troponin C and calmodulin. J Mol Biol. 1985 Feb 20;181(4):533–544. doi: 10.1016/0022-2836(85)90425-5. [DOI] [PubMed] [Google Scholar]
- Xu G. Q., Hitchcock-DeGregori S. E. Synthesis of a troponin C cDNA and expression of wild-type and mutant proteins in Escherichia coli. J Biol Chem. 1988 Sep 25;263(27):13962–13969. [PubMed] [Google Scholar]
- da Silva E. F., Sorenson M. M., Smillie L. B., Barrabin H., Scofano H. M. Comparison of calmodulin and troponin C with and without its amino-terminal helix (residues 1-11) in the activation of erythrocyte Ca(2+)-ATPase. J Biol Chem. 1993 Dec 15;268(35):26220–26225. [PubMed] [Google Scholar]