Abstract
The aspartic proteinases are an important family of enzymes associated with several pathological conditions such as hypertension (renin), gastric ulcers (pepsin), neoplastic disease (cathepsins D and E), and AIDS (HIV proteinase). Studies of inhibitor binding are therefore of great importance for design of novel inhibitors for potential therapeutic applications. Numerous X-ray analyses have shown that transition-state isostere inhibitors of aspartic proteinases bind in similar extended conformations in the active-site cleft of the target enzyme. Upon comparison of 21 endothiapepsin inhibitor complexes, the hydrogen bond lengths were found to be shortest where the isostere (P1-P'1) interacts with the enzyme's catalytic aspartate pair. Hydrogen bonds with good geometry also occur at P'2, and more so at P3, where a conserved water molecule is involved in the interactions. Weaker interactions also occur at P2, where the side-chain conformations of the inhibitors appear to be more variable than at the more tightly held positions. At P2 and, to a lesser extent, P3, the side-chain conformations depend intriguingly on interactions with spatially adjacent side chains, namely P'1 and P1, respectively. The tight binding at P1-P'1, P3, and P'2 is also reflected in the larger number of van der Waals contacts and the large decreases in solvent-accessible area at these positions, as well as their low temperature factors. Our analysis substantiates earlier proposals for the locations of protons in the transition-state complex. Aspartate 32 is probably ionized in the complexes, its charge being stabilized by 1, or sometimes 2, hydrogen bonds from the transition-state analogues at P1. The detailed comparison also indicates that the P1 and P2 residues of substrate in the ES complex may be strained by the extensive binding interactions at P3, P'1, and P'2 in a manner that would facilitate hydrolysis of the scissile peptide bond.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey D., Cooper J. B., Veerapandian B., Blundell T. L., Atrash B., Jones D. M., Szelke M. X-ray-crystallographic studies of complexes of pepstatin A and a statine-containing human renin inhibitor with endothiapepsin. Biochem J. 1993 Jan 15;289(Pt 2):363–371. doi: 10.1042/bj2890363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Blundell T. L., Cooper J., Foundling S. I., Jones D. M., Atrash B., Szelke M. On the rational design of renin inhibitors: X-ray studies of aspartic proteinases complexed with transition-state analogues. Biochemistry. 1987 Sep 8;26(18):5585–5590. doi: 10.1021/bi00392a001. [DOI] [PubMed] [Google Scholar]
- Blundell T. L., Jenkins J. A., Sewell B. T., Pearl L. H., Cooper J. B., Tickle I. J., Veerapandian B., Wood S. P. X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. J Mol Biol. 1990 Feb 20;211(4):919–941. doi: 10.1016/0022-2836(90)90084-Y. [DOI] [PubMed] [Google Scholar]
- Bott R., Subramanian E., Davies D. R. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-A resolution. Biochemistry. 1982 Dec 21;21(26):6956–6962. doi: 10.1021/bi00269a052. [DOI] [PubMed] [Google Scholar]
- Cooper J. B., Foundling S. I., Blundell T. L., Boger J., Jupp R. A., Kay J. X-ray studies of aspartic proteinase-statine inhibitor complexes. Biochemistry. 1989 Oct 17;28(21):8596–8603. doi: 10.1021/bi00447a049. [DOI] [PubMed] [Google Scholar]
- Cooper J., Foundling S., Hemmings A., Blundell T., Jones D. M., Hallett A., Szelke M. The structure of a synthetic pepsin inhibitor complexed with endothiapepsin. Eur J Biochem. 1987 Nov 16;169(1):215–221. doi: 10.1111/j.1432-1033.1987.tb13600.x. [DOI] [PubMed] [Google Scholar]
- Cooper J., Quail W., Frazao C., Foundling S. I., Blundell T. L., Humblet C., Lunney E. A., Lowther W. T., Dunn B. M. X-ray crystallographic analysis of inhibition of endothiapepsin by cyclohexyl renin inhibitors. Biochemistry. 1992 Sep 8;31(35):8142–8150. doi: 10.1021/bi00150a005. [DOI] [PubMed] [Google Scholar]
- Davies D. R. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990;19:189–215. doi: 10.1146/annurev.bb.19.060190.001201. [DOI] [PubMed] [Google Scholar]
- Dealwis C. G., Frazao C., Badasso M., Cooper J. B., Tickle I. J., Driessen H., Blundell T. L., Murakami K., Miyazaki H., Sueiras-Diaz J. X-ray analysis at 2.0 A resolution of mouse submaxillary renin complexed with a decapeptide inhibitor CH-66, based on the 4-16 fragment of rat angiotensinogen. J Mol Biol. 1994 Feb 11;236(1):342–360. doi: 10.1006/jmbi.1994.1139. [DOI] [PubMed] [Google Scholar]
- Foundling S. I., Cooper J., Watson F. E., Cleasby A., Pearl L. H., Sibanda B. L., Hemmings A., Wood S. P., Blundell T. L., Valler M. J. High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes. 1987 May 28-Jun 3Nature. 327(6120):349–352. doi: 10.1038/327349a0. [DOI] [PubMed] [Google Scholar]
- Gelb M. H., Svaren J. P., Abeles R. H. Fluoro ketone inhibitors of hydrolytic enzymes. Biochemistry. 1985 Apr 9;24(8):1813–1817. doi: 10.1021/bi00329a001. [DOI] [PubMed] [Google Scholar]
- James M. N., Sielecki A. R., Hayakawa K., Gelb M. H. Crystallographic analysis of transition state mimics bound to penicillopepsin: difluorostatine- and difluorostatone-containing peptides. Biochemistry. 1992 Apr 21;31(15):3872–3886. doi: 10.1021/bi00130a019. [DOI] [PubMed] [Google Scholar]
- James M. N., Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 A resolution. J Mol Biol. 1983 Jan 15;163(2):299–361. doi: 10.1016/0022-2836(83)90008-6. [DOI] [PubMed] [Google Scholar]
- James M. N., Sielecki A., Salituro F., Rich D. H., Hofmann T. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6137–6141. doi: 10.1073/pnas.79.20.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lapatto R., Blundell T., Hemmings A., Overington J., Wilderspin A., Wood S., Merson J. R., Whittle P. J., Danley D. E., Geoghegan K. F. X-ray analysis of HIV-1 proteinase at 2.7 A resolution confirms structural homology among retroviral enzymes. Nature. 1989 Nov 16;342(6247):299–302. doi: 10.1038/342299a0. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Lunney E. A., Hamilton H. W., Hodges J. C., Kaltenbronn J. S., Repine J. T., Badasso M., Cooper J. B., Dealwis C., Wallace B. A., Lowther W. T. Analyses of ligand binding in five endothiapepsin crystal complexes and their use in the design and evaluation of novel renin inhibitors. J Med Chem. 1993 Nov 26;36(24):3809–3820. doi: 10.1021/jm00076a008. [DOI] [PubMed] [Google Scholar]
- Pearl L. H. The catalytic mechanism of aspartic proteinases. FEBS Lett. 1987 Apr 6;214(1):8–12. doi: 10.1016/0014-5793(87)80003-0. [DOI] [PubMed] [Google Scholar]
- Precigoux G., Benkoulouche M., Geoffre S. The renin-angiotensin system: an example of the study of linear peptides by x-ray crystallography. Biopolymers. 1989 Jan;28(1):41–49. doi: 10.1002/bip.360280107. [DOI] [PubMed] [Google Scholar]
- Precigoux G. Conformational preferences and the role of the statine residue in the crystal state. Biopolymers. 1991 May;31(6):683–689. doi: 10.1002/bip.360310613. [DOI] [PubMed] [Google Scholar]
- Rich D. H., Sun E. T., Ulm E. Synthesis of analogues of the carboxyl protease inhibitor pepstatin. Effects of structure on inhibition of pepsin and renin. J Med Chem. 1980 Jan;23(1):27–33. doi: 10.1021/jm00175a006. [DOI] [PubMed] [Google Scholar]
- Sali A., Blundell T. L. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol. 1990 Mar 20;212(2):403–428. doi: 10.1016/0022-2836(90)90134-8. [DOI] [PubMed] [Google Scholar]
- Sali A., Veerapandian B., Cooper J. B., Foundling S. I., Hoover D. J., Blundell T. L. High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. EMBO J. 1989 Aug;8(8):2179–2188. doi: 10.1002/j.1460-2075.1989.tb08340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sali A., Veerapandian B., Cooper J. B., Moss D. S., Hofmann T., Blundell T. L. Domain flexibility in aspartic proteinases. Proteins. 1992 Feb;12(2):158–170. doi: 10.1002/prot.340120209. [DOI] [PubMed] [Google Scholar]
- Suguna K., Padlan E. A., Bott R., Boger J., Parris K. D., Davies D. R. Structures of complexes of rhizopuspepsin with pepstatin and other statine-containing inhibitors. Proteins. 1992 Jul;13(3):195–205. doi: 10.1002/prot.340130303. [DOI] [PubMed] [Google Scholar]
- Suguna K., Padlan E. A., Smith C. W., Carlson W. D., Davies D. R. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7009–7013. doi: 10.1073/pnas.84.20.7009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szelke M., Leckie B., Hallett A., Jones D. M., Sueiras J., Atrash B., Lever A. F. Potent new inhibitors of human renin. Nature. 1982 Oct 7;299(5883):555–557. doi: 10.1038/299555a0. [DOI] [PubMed] [Google Scholar]
- Tang J., James M. N., Hsu I. N., Jenkins J. A., Blundell T. L. Structural evidence for gene duplication in the evolution of the acid proteases. Nature. 1978 Feb 16;271(5646):618–621. doi: 10.1038/271618a0. [DOI] [PubMed] [Google Scholar]
- Veerapandian B., Cooper J. B., Sali A., Blundell T. L., Rosati R. L., Dominy B. W., Damon D. B., Hoover D. J. Direct observation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinases. Protein Sci. 1992 Mar;1(3):322–328. doi: 10.1002/pro.5560010303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veerapandian B., Cooper J. B., Sali A., Blundell T. L. X-ray analyses of aspartic proteinases. III Three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 A resolution. J Mol Biol. 1990 Dec 20;216(4):1017–1029. doi: 10.1016/S0022-2836(99)80017-5. [DOI] [PubMed] [Google Scholar]
- Wlodawer A., Miller M., Jaskólski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616–621. doi: 10.1126/science.2548279. [DOI] [PubMed] [Google Scholar]
