Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Nov;3(11):1927–1937. doi: 10.1002/pro.5560031104

The tyrosine corner: a feature of most Greek key beta-barrel proteins.

J M Hemmingsen 1, K M Gernert 1, J S Richardson 1, D C Richardson 1
PMCID: PMC2142652  PMID: 7703839

Abstract

The Tyr corner is a conformation in which a tyrosine (residue "Y") near the beginning or end of an antiparallel beta-strand makes an H bond from its side-chain OH group to the backbone NH and/or CO of residue Y - 3, Y - 4, or Y - 5 in the nearby connection. The most common "classic" case is a delta 4 Tyr corner (more than 40 examples listed), in which the H bond is to residue Y - 4 and the Tyr chi 1 is near -60 degrees. Y - 2 is almost always a glycine, whose left-handed beta or very extended beta conformation helps the backbone curve around the Tyr ring. Residue Y - 3 is in polyproline II conformation (often Pro), and residue Y - 5 is usually a hydrophobic (often Leu) that packs next to the Tyr ring. The consensus sequence, then, is LxPGxY, where the first x (the H-bonding position) is hydrophilic. Residues Y and Y - 2 both form narrow pairs of beta-sheet H-bonds with the neighboring strand. delta 5 Tyr corners have a 1-residue insertion between the Gly and Tyr, forming a beta-bulge. One protein family has a delta 4 corner formed by a His rather than a Tyr, and several examples use Trp in place of Tyr. For almost all these cases, the protein or domain is a Greek key beta-barrel structure, the Tyr corner ends a Greek key connection, and it is well-conserved in related proteins. Most low-twist Greek key beta-barrels have 1 Tyr corner. "Reverse" delta 4 Tyr corners (H bonded to Y + 4) and other variants are described, all less common and less conserved. It seems likely that the more classic Tyr corners (delta 4, delta 5, and delta 3 Tyr, Trp, or His) contribute to the stability of a Greek key connection over a hairpin connection, and also that they may aid in the process of folding up Greek key structures.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Bork P., Doolittle R. F. Fibronectin type III modules in the receptor phosphatase CD45 and tapeworm antigens. Protein Sci. 1993 Jul;2(7):1185–1187. doi: 10.1002/pro.5560020714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  4. Chothia C., Levitt M., Richardson D. Structure of proteins: packing of alpha-helices and pleated sheets. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4130–4134. doi: 10.1073/pnas.74.10.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. doi: 10.1016/0022-2836(77)90094-8. [DOI] [PubMed] [Google Scholar]
  6. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  7. Markus M. A., Nakayama T., Matsudaira P., Wagner G. Solution structure of villin 14T, a domain conserved among actin-severing proteins. Protein Sci. 1994 Jan;3(1):70–81. doi: 10.1002/pro.5560030110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  9. Richardson D. C., Richardson J. S. Kinemages--simple macromolecular graphics for interactive teaching and publication. Trends Biochem Sci. 1994 Mar;19(3):135–138. doi: 10.1016/0968-0004(94)90207-0. [DOI] [PubMed] [Google Scholar]
  10. Richardson D. C., Richardson J. S. The kinemage: a tool for scientific communication. Protein Sci. 1992 Jan;1(1):3–9. doi: 10.1002/pro.5560010102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  12. Richardson J. S., Richardson D. C., Tweedy N. B., Gernert K. M., Quinn T. P., Hecht M. H., Erickson B. W., Yan Y., McClain R. D., Donlan M. E. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992. Biophys J. 1992 Nov;63(5):1185–1209. [PMC free article] [PubMed] [Google Scholar]
  13. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  14. Richardson J. S. beta-Sheet topology and the relatedness of proteins. Nature. 1977 Aug 11;268(5620):495–500. doi: 10.1038/268495a0. [DOI] [PubMed] [Google Scholar]
  15. Rini J. M., Stanfield R. L., Stura E. A., Salinas P. A., Profy A. T., Wilson I. A. Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6325–6329. doi: 10.1073/pnas.90.13.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Salemme F. R. Structural properties of protein beta-sheets. Prog Biophys Mol Biol. 1983;42(2-3):95–133. doi: 10.1016/0079-6107(83)90005-6. [DOI] [PubMed] [Google Scholar]
  17. Sibanda B. L., Thornton J. M. Beta-hairpin families in globular proteins. Nature. 1985 Jul 11;316(6024):170–174. doi: 10.1038/316170a0. [DOI] [PubMed] [Google Scholar]
  18. Wistow G., Turnell B., Summers L., Slingsby C., Moss D., Miller L., Lindley P., Blundell T. X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 A resolution. J Mol Biol. 1983 Oct 15;170(1):175–202. doi: 10.1016/s0022-2836(83)80232-0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES