Abstract
Using site-directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp-369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000-fold lower than the value for the wild-type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p-nitrophenol phosphate was 2 orders of magnitude lower than for the wild-type enzyme. Thus the kcat/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp-369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 A resolution with an R-factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X-ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. A., Bosron W. F., Kennedy F. S., Vallee B. L. Role of magnesium in Escherichia coli alkaline phosphatase. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2989–2993. doi: 10.1073/pnas.72.8.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson R. A., Kennedy F. S., Vallee B. L. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase. Biochemistry. 1976 Aug 24;15(17):3710–3716. doi: 10.1021/bi00662a011. [DOI] [PubMed] [Google Scholar]
- Bloch W., Bickar D. Phosphate binding to Escherichia coli alkaline phosphatase. Evidence for site homogeneity. J Biol Chem. 1978 Sep 10;253(17):6211–6217. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chaidaroglou A., Brezinski D. J., Middleton S. A., Kantrowitz E. R. Function of arginine-166 in the active site of Escherichia coli alkaline phosphatase. Biochemistry. 1988 Nov 1;27(22):8338–8343. doi: 10.1021/bi00422a008. [DOI] [PubMed] [Google Scholar]
- Chen L., Neidhart D., Kohlbrenner W. M., Mandecki W., Bell S., Sowadski J., Abad-Zapatero C. 3-D structure of a mutant (Asp101-->Ser) of E.coli alkaline phosphatase with higher catalytic activity. Protein Eng. 1992 Oct;5(7):605–610. doi: 10.1093/protein/5.7.605. [DOI] [PubMed] [Google Scholar]
- Coleman J. E., Nakamura K., Chlebowski J. F. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. J Biol Chem. 1983 Jan 10;258(1):386–395. [PubMed] [Google Scholar]
- DAYAN J., WILSON I. B. THE PHOSPHORYLATION OF TRIS BY ALKALINE PHOSPHATASE. Biochim Biophys Acta. 1964 Mar 9;81:620–623. doi: 10.1016/0926-6569(64)90154-3. [DOI] [PubMed] [Google Scholar]
- Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
- GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
- Gettins P., Coleman J. E. 113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases. J Biol Chem. 1983 Jan 10;258(1):396–407. [PubMed] [Google Scholar]
- Gettins P., Coleman J. E. Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR. J Biol Chem. 1984 Sep 10;259(17):11036–11040. [PubMed] [Google Scholar]
- Gettins P., Coleman J. E. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR. J Biol Chem. 1984 Apr 25;259(8):4991–4997. [PubMed] [Google Scholar]
- Gettins P., Metzler M., Coleman J. E. Alkaline phosphatase. 31P NMR probes of the mechanism. J Biol Chem. 1985 Mar 10;260(5):2875–2883. [PubMed] [Google Scholar]
- Hough E., Hansen L. K., Birknes B., Jynge K., Hansen S., Hordvik A., Little C., Dodson E., Derewenda Z. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature. 1989 Mar 23;338(6213):357–360. doi: 10.1038/338357a0. [DOI] [PubMed] [Google Scholar]
- Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
- Hull W. E., Halford S. E., Gutfreund H., Sykes B. D. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH. Biochemistry. 1976 Apr 6;15(7):1547–1561. doi: 10.1021/bi00652a028. [DOI] [PubMed] [Google Scholar]
- Janeway C. M., Xu X., Murphy J. E., Chaidaroglou A., Kantrowitz E. R. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Biochemistry. 1993 Feb 16;32(6):1601–1609. doi: 10.1021/bi00057a026. [DOI] [PubMed] [Google Scholar]
- Jones S. R., Kindman L. A., Knowles J. R. Stereochemistry of phosphoryl group transfer using a chiral [16O, 17O, 18O] stereochemical course of alkaline phosphatase. Nature. 1978 Oct 12;275(5680):564–565. doi: 10.1038/275564a0. [DOI] [PubMed] [Google Scholar]
- Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991 Mar 20;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. [DOI] [PubMed] [Google Scholar]
- Kim E. E., Wyckoff H. W. Structure of alkaline phosphatases. Clin Chim Acta. 1990 Jan 15;186(2):175–187. doi: 10.1016/0009-8981(90)90035-q. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Murphy J. E., Kantrowitz E. R. Why are mammalian alkaline phosphatases much more active than bacterial alkaline phosphatases? Mol Microbiol. 1994 May;12(3):351–357. doi: 10.1111/j.1365-2958.1994.tb01024.x. [DOI] [PubMed] [Google Scholar]
- Murphy J. E., Xu X., Kantrowitz E. R. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase. J Biol Chem. 1993 Oct 15;268(29):21497–21500. doi: 10.2210/pdb1anh/pdb. [DOI] [PubMed] [Google Scholar]
- PLOCKE D. J., VALLEE B. L. Interaction of alkaline phosphatase of E. coli with metal ions and chelating agents. Biochemistry. 1962 Nov;1:1039–1043. doi: 10.1021/bi00912a014. [DOI] [PubMed] [Google Scholar]
- SCHWARTZ J. H., LIPMANN F. Phosphate incorporation into alkaline phosphatase of E. coli. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1996–2005. doi: 10.1073/pnas.47.12.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowadski J. M., Foster B. A., Wyckoff H. W. Structure of alkaline phosphatase with zinc/magnesium cobalt or cadmium in the functional metal sites. J Mol Biol. 1981 Aug 5;150(2):245–272. doi: 10.1016/0022-2836(81)90451-4. [DOI] [PubMed] [Google Scholar]
- Sowadski J. M., Handschumacher M. D., Murthy H. M., Foster B. A., Wyckoff H. W. Refined structure of alkaline phosphatase from Escherichia coli at 2.8 A resolution. J Mol Biol. 1985 Nov 20;186(2):417–433. doi: 10.1016/0022-2836(85)90115-9. [DOI] [PubMed] [Google Scholar]
- Sowadski J. M., Handschumacher M. D., Murthy H. M., Kundrot C. E., Wyckoff H. W. Crystallographic observations of the metal ion triple in the active site region of alkaline phosphatase. J Mol Biol. 1983 Oct 25;170(2):575–581. doi: 10.1016/s0022-2836(83)80162-4. [DOI] [PubMed] [Google Scholar]
- Trentham D. R., Gutfreund H. The kinetics of the reaction of nitrophenyl phosphates with alkaline phosphatase from Escherichia coli. Biochem J. 1968 Jan;106(2):455–460. doi: 10.1042/bj1060455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volbeda A., Lahm A., Sakiyama F., Suck D. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. EMBO J. 1991 Jul;10(7):1607–1618. doi: 10.1002/j.1460-2075.1991.tb07683.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON I. B., DAYAN J., CYR K. SOME PROPERTIES OF ALKALINE PHOSPHATASE FROM ESCHERICHIA COLI. TRANSPHOSPHORYLATION. J Biol Chem. 1964 Dec;239:4182–4185. [PubMed] [Google Scholar]
- Xu X., Kantrowitz E. R. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity. Biochemistry. 1991 Aug 6;30(31):7789–7796. doi: 10.1021/bi00245a018. [DOI] [PubMed] [Google Scholar]
- Xu X., Kantrowitz E. R. Binding of magnesium in a mutant Escherichia coli alkaline phosphatase changes the rate-determining step in the reaction mechanism. Biochemistry. 1993 Oct 12;32(40):10683–10691. doi: 10.1021/bi00091a019. [DOI] [PubMed] [Google Scholar]
- Xu X., Kantrowitz E. R. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase. J Biol Chem. 1992 Aug 15;267(23):16244–16251. [PubMed] [Google Scholar]