Abstract
Nerve growth factor (NGF), which has a tertiary structure based on a cluster of 3 cystine disulfides and 2 very extended, but distorted beta-hairpins, is the prototype of a larger family of neurotrophins. Prior to the availability of cloning techniques, the mouse submandibular gland was the richest source of NGF and provided sufficient material to enable its biochemical characterization. It binds as a dimer to at least 2 cell-surface receptor types expressed in a variety of neuronal and non-neuronal cells. Residues involved in these interactions and in the maintenance of tertiary and quaternary structure have been identified by chemical modification and site-directed mutagenesis, and this information can be related to their location in the 3-dimensional structure. For example, interactions between aromatic residues contribute to the stability of the NGF dimer, and specific surface lysine residues participate in receptor contacts. The conclusion from these studies is that receptor interactions involve broad surface regions, which may be composed of residues from both promoters in the dimer.
Full Text
The Full Text of this article is available as a PDF (7.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angeletti R. H., Bradshaw R. A., Wade R. D. Subunit structure and amino acid composition of mouse submaxillary gland nerve growth factor. Biochemistry. 1971 Feb 2;10(3):463–469. doi: 10.1021/bi00779a018. [DOI] [PubMed] [Google Scholar]
- Angeletti R. H., Hermodson M. A., Bradshaw R. A. Amino acid sequences of mouse 2.5S nerve growth factor. II. Isolation and characterization of the thermolytic and peptic peptides and the complete covalent structure. Biochemistry. 1973 Jan 2;12(1):100–115. doi: 10.1021/bi00725a018. [DOI] [PubMed] [Google Scholar]
- Berkemeier L. R., Winslow J. W., Kaplan D. R., Nikolics K., Goeddel D. V., Rosenthal A. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 1991 Nov;7(5):857–866. doi: 10.1016/0896-6273(91)90287-a. [DOI] [PubMed] [Google Scholar]
- Blaber M., Isackson P. J., Holden H. M., Bradshaw R. A. Synthetic chimeras of mouse growth factor-associated glandular kallikreins. II. Growth factor binding properties. Protein Sci. 1993 Aug;2(8):1220–1228. doi: 10.1002/pro.5560020804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bothwell M. A., Shooter E. M. Dissociation equilibrium constant of beta nerve growth factor. J Biol Chem. 1977 Dec 10;252(23):8532–8536. [PubMed] [Google Scholar]
- Bradshaw R. A., Blundell T. L., Lapatto R., McDonald N. Q., Murray-Rust J. Nerve growth factor revisited. Trends Biochem Sci. 1993 Feb;18(2):48–52. doi: 10.1016/0968-0004(93)90052-o. [DOI] [PubMed] [Google Scholar]
- Bradshaw R. A. Nerve growth factor. Annu Rev Biochem. 1978;47:191–216. doi: 10.1146/annurev.bi.47.070178.001203. [DOI] [PubMed] [Google Scholar]
- COHEN S. Purification and metabolic effects of a nerve growth-promoting protein from snake venom. J Biol Chem. 1959 May;234(5):1129–1137. [PubMed] [Google Scholar]
- Chao M. V. Neurotrophin receptors: a window into neuronal differentiation. Neuron. 1992 Oct;9(4):583–593. doi: 10.1016/0896-6273(92)90023-7. [DOI] [PubMed] [Google Scholar]
- Chen Z., Bode W. Refined 2.5 A X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor. Crystallization, Patterson search, structure determination, refinement, structure and comparison with its components and with the bovine trypsin-pancreatic trypsin inhibitor complex. J Mol Biol. 1983 Feb 25;164(2):283–311. doi: 10.1016/0022-2836(83)90078-5. [DOI] [PubMed] [Google Scholar]
- Cohen S. PURIFICATION OF A NERVE-GROWTH PROMOTING PROTEIN FROM THE MOUSE SALIVARY GLAND AND ITS NEURO-CYTOTOXIC ANTISERUM. Proc Natl Acad Sci U S A. 1960 Mar;46(3):302–311. doi: 10.1073/pnas.46.3.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daopin S., Piez K. A., Ogawa Y., Davies D. R. Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science. 1992 Jul 17;257(5068):369–373. doi: 10.1126/science.1631557. [DOI] [PubMed] [Google Scholar]
- Deranleau D. A., Bradshaw R. A., Schwyzer R. The use of n-methylnicotin amide chloride as a conformational probe for chicken egg-white lysozyme. Proc Natl Acad Sci U S A. 1969 Jul;63(3):885–889. doi: 10.1073/pnas.63.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drinkwater C. C., Suter U., Angst C., Shooter E. M. Mutation of tryptophan-21 in mouse nerve growth factor (NGF) affects binding to the fast NGF receptor but not induction of neurites on PC12 cells. Proc Biol Sci. 1991 Dec 23;246(1317):307–313. doi: 10.1098/rspb.1991.0159. [DOI] [PubMed] [Google Scholar]
- Ebendal T. Function and evolution in the NGF family and its receptors. J Neurosci Res. 1992 Aug;32(4):461–470. doi: 10.1002/jnr.490320402. [DOI] [PubMed] [Google Scholar]
- Ernfors P., Ibáez C. F., Ebendal T., Olson L., Persson H. Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5454–5458. doi: 10.1073/pnas.87.14.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans B. A., Drinkwater C. C., Richards R. I. Mouse glandular kallikrein genes. Structure and partial sequence analysis of the kallikrein gene locus. J Biol Chem. 1987 Jun 15;262(17):8027–8034. [PubMed] [Google Scholar]
- Frazier W. A., Angeletti R. H., Bradshaw R. A. Nerve growth factor and insulin. Science. 1972 May 5;176(4034):482–488. doi: 10.1126/science.176.4034.482. [DOI] [PubMed] [Google Scholar]
- Frazier W. A., Boyd L. F., Bradshaw R. A. Interaction of nerve growth factor with surface membranes: biological competence of insolubilized nerve growth factor. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2931–2935. doi: 10.1073/pnas.70.10.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazier W. A., Hogue-Angeletti R. A., Sherman R., Bradshaw R. A. Topography of mouse 2.5S nerve growth factor. Reactivity of tyrosine and tryptophan. Biochemistry. 1973 Aug 14;12(17):3281–3293. doi: 10.1021/bi00741a021. [DOI] [PubMed] [Google Scholar]
- Greene L. A., Shooter E. M. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci. 1980;3:353–402. doi: 10.1146/annurev.ne.03.030180.002033. [DOI] [PubMed] [Google Scholar]
- Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hohn A., Leibrock J., Bailey K., Barde Y. A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990 Mar 22;344(6264):339–341. doi: 10.1038/344339a0. [DOI] [PubMed] [Google Scholar]
- Holland D. R., Cousens L. S., Meng W., Matthews B. W. Nerve growth factor in different crystal forms displays structural flexibility and reveals zinc binding sites. J Mol Biol. 1994 Jun 10;239(3):385–400. doi: 10.1006/jmbi.1994.1380. [DOI] [PubMed] [Google Scholar]
- Ibáez C. F., Ebendal T., Barbany G., Murray-Rust J., Blundell T. L., Persson H. Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell. 1992 Apr 17;69(2):329–341. doi: 10.1016/0092-8674(92)90413-7. [DOI] [PubMed] [Google Scholar]
- Ibáez C. F., Ebendal T., Persson H. Chimeric molecules with multiple neurotrophic activities reveal structural elements determining the specificities of NGF and BDNF. EMBO J. 1991 Aug;10(8):2105–2110. doi: 10.1002/j.1460-2075.1991.tb07743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibáez C. F., Hallbök F., Ebendal T., Persson H. Structure-function studies of nerve growth factor: functional importance of highly conserved amino acid residues. EMBO J. 1990 May;9(5):1477–1483. doi: 10.1002/j.1460-2075.1990.tb08265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibáez C. F., Ilag L. L., Murray-Rust J., Persson H. An extended surface of binding to Trk tyrosine kinase receptors in NGF and BDNF allows the engineering of a multifunctional pan-neurotrophin. EMBO J. 1993 Jun;12(6):2281–2293. doi: 10.1002/j.1460-2075.1993.tb05882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ip N. Y., Ibáez C. F., Nye S. H., McClain J., Jones P. F., Gies D. R., Belluscio L., Le Beau M. M., Espinosa R., 3rd, Squinto S. P. Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3060–3064. doi: 10.1073/pnas.89.7.3060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ip N. Y., Stitt T. N., Tapley P., Klein R., Glass D. J., Fandl J., Greene L. A., Barbacid M., Yancopoulos G. D. Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron. 1993 Feb;10(2):137–149. doi: 10.1016/0896-6273(93)90306-c. [DOI] [PubMed] [Google Scholar]
- Isackson P. J., Ullrich A., Bradshaw R. A. Mouse 7S nerve growth factor: complete sequence of a cDNA coding for the alpha-subunit precursor and its relationship to serine proteases. Biochemistry. 1984 Dec 4;23(25):5997–6002. doi: 10.1021/bi00320a015. [DOI] [PubMed] [Google Scholar]
- Johnson D., Lanahan A., Buck C. R., Sehgal A., Morgan C., Mercer E., Bothwell M., Chao M. Expression and structure of the human NGF receptor. Cell. 1986 Nov 21;47(4):545–554. doi: 10.1016/0092-8674(86)90619-7. [DOI] [PubMed] [Google Scholar]
- Kahle P., Burton L. E., Schmelzer C. H., Hertel C. The amino terminus of nerve growth factor is involved in the interaction with the receptor tyrosine kinase p140trkA. J Biol Chem. 1992 Nov 15;267(32):22707–22710. [PubMed] [Google Scholar]
- Kaplan D. R., Hempstead B. L., Martin-Zanca D., Chao M. V., Parada L. F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991 Apr 26;252(5005):554–558. doi: 10.1126/science.1850549. [DOI] [PubMed] [Google Scholar]
- Klein R., Nanduri V., Jing S. A., Lamballe F., Tapley P., Bryant S., Cordon-Cardo C., Jones K. R., Reichardt L. F., Barbacid M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991 Jul 26;66(2):395–403. doi: 10.1016/0092-8674(91)90628-c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamballe F., Klein R., Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991 Sep 6;66(5):967–979. doi: 10.1016/0092-8674(91)90442-2. [DOI] [PubMed] [Google Scholar]
- Large T. H., Weskamp G., Helder J. C., Radeke M. J., Misko T. P., Shooter E. M., Reichardt L. F. Structure and developmental expression of the nerve growth factor receptor in the chicken central nervous system. Neuron. 1989 Feb;2(2):1123–1134. doi: 10.1016/0896-6273(89)90179-7. [DOI] [PubMed] [Google Scholar]
- Levi A., Shechter Y., Neufeld E. J., Schlessinger J. Mobility, clustering, and transport of nerve growth factor in embryonal sensory cells and in a sympathetic neuronal cell line. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3469–3473. doi: 10.1073/pnas.77.6.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longo F. M., Vu T. K., Mobley W. C. The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides. Cell Regul. 1990 Jan;1(2):189–195. doi: 10.1091/mbc.1.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo Y., Neet K. E. The unprocessed C-terminal dipeptide of recombinant beta-nerve growth factor determines three stable forms with distinct biological activities. J Biol Chem. 1992 Jun 15;267(17):12275–12283. [PubMed] [Google Scholar]
- Maisonpierre P. C., Belluscio L., Squinto S., Ip N. Y., Furth M. E., Lindsay R. M., Yancopoulos G. D. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990 Mar 23;247(4949 Pt 1):1446–1451. doi: 10.1126/science.247.4949.1446. [DOI] [PubMed] [Google Scholar]
- Marshall R. D. Glycoproteins. Annu Rev Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
- Meier R., Becker-André M., Götz R., Heumann R., Shaw A., Thoenen H. Molecular cloning of bovine and chick nerve growth factor (NGF): delineation of conserved and unconserved domains and their relationship to the biological activity and antigenicity of NGF. EMBO J. 1986 Jul;5(7):1489–1493. doi: 10.1002/j.1460-2075.1986.tb04387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J. B., Jr, Mobley W. C., Shooter E. M. Proteolytic modification of the beta nerve growth factor protein. Biochemistry. 1974 Feb 12;13(4):833–840. doi: 10.1021/bi00701a030. [DOI] [PubMed] [Google Scholar]
- Murphy R. A., Chlumecky V., Smillie L. B., Carpenter M., Nattriss M., Anderson J. K., Rhodes J. A., Barker P. A., Siminoski K., Campenot R. B. Isolation and characterization of a glycosylated form of beta nerve growth factor in mouse submandibular glands. J Biol Chem. 1989 Jul 25;264(21):12502–12509. [PubMed] [Google Scholar]
- Murray-Rust J., McDonald N. Q., Blundell T. L., Hosang M., Oefner C., Winkler F., Bradshaw R. A. Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure. 1993 Oct 15;1(2):153–159. doi: 10.1016/0969-2126(93)90029-g. [DOI] [PubMed] [Google Scholar]
- Oefner C., D'Arcy A., Winkler F. K., Eggimann B., Hosang M. Crystal structure of human platelet-derived growth factor BB. EMBO J. 1992 Nov;11(11):3921–3926. doi: 10.1002/j.1460-2075.1992.tb05485.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pattison S. E., Dunn M. F. On the relationship of zinc ion to the structure and function of the 7S nerve growth factor protein. Biochemistry. 1975 Jun 17;14(12):2733–2739. doi: 10.1021/bi00683a027. [DOI] [PubMed] [Google Scholar]
- Pulliam M. W., Boyd L. F., Baglan N. C., Bradshaw R. A. Specific binding of covalently cross-linked mouse nerve growth factor to responsive peripheral neurons. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1281–1289. doi: 10.1016/0006-291x(75)90165-5. [DOI] [PubMed] [Google Scholar]
- Radziejewski C., Robinson R. C., DiStefano P. S., Taylor J. W. Dimeric structure and conformational stability of brain-derived neurotrophic factor and neurotrophin-3. Biochemistry. 1992 May 12;31(18):4431–4436. doi: 10.1021/bi00133a007. [DOI] [PubMed] [Google Scholar]
- Raffioni S., Bradshaw R. A., Buxser S. E. The receptors for nerve growth factor and other neurotrophins. Annu Rev Biochem. 1993;62:823–850. doi: 10.1146/annurev.bi.62.070193.004135. [DOI] [PubMed] [Google Scholar]
- Rosenberg M. B., Hawrot E., Breakefield X. O. Receptor binding activities of biotinylated derivatives of beta-nerve growth factor. J Neurochem. 1986 Feb;46(2):641–648. doi: 10.1111/j.1471-4159.1986.tb13015.x. [DOI] [PubMed] [Google Scholar]
- Rosenthal A., Goeddel D. V., Nguyen T., Lewis M., Shih A., Laramee G. R., Nikolics K., Winslow J. W. Primary structure and biological activity of a novel human neurotrophic factor. Neuron. 1990 May;4(5):767–773. doi: 10.1016/0896-6273(90)90203-r. [DOI] [PubMed] [Google Scholar]
- Schlunegger M. P., Grütter M. G. An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2. Nature. 1992 Jul 30;358(6385):430–434. doi: 10.1038/358430a0. [DOI] [PubMed] [Google Scholar]
- Scott J., Selby M., Urdea M., Quiroga M., Bell G. I., Rutter W. J. Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature. 1983 Apr 7;302(5908):538–540. doi: 10.1038/302538a0. [DOI] [PubMed] [Google Scholar]
- Server A. C., Shooter E. M. Nerve growth factor. Adv Protein Chem. 1977;31:339–409. doi: 10.1016/s0065-3233(08)60221-1. [DOI] [PubMed] [Google Scholar]
- Soppet D., Escandon E., Maragos J., Middlemas D. S., Reid S. W., Blair J., Burton L. E., Stanton B. R., Kaplan D. R., Hunter T. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell. 1991 May 31;65(5):895–903. doi: 10.1016/0092-8674(91)90396-g. [DOI] [PubMed] [Google Scholar]
- Squinto S. P., Stitt T. N., Aldrich T. H., Davis S., Bianco S. M., Radziejewski C., Glass D. J., Masiakowski P., Furth M. E., Valenzuela D. M. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell. 1991 May 31;65(5):885–893. doi: 10.1016/0092-8674(91)90395-F. [DOI] [PubMed] [Google Scholar]
- Stach R. W., Shooter E. M. The biological activity of cross-linked beta nerve growth factor protein. J Biol Chem. 1974 Oct 25;249(20):6668–6674. [PubMed] [Google Scholar]
- Suter U., Angst C., Tien C. L., Drinkwater C. C., Lindsay R. M., Shooter E. M. NGF/BDNF chimeric proteins: analysis of neurotrophin specificity by homolog-scanning mutagenesis. J Neurosci. 1992 Jan;12(1):306–318. doi: 10.1523/JNEUROSCI.12-01-00306.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas K. A., Baglan N. C., Bradshaw R. A. The amino acid sequence of the gamma-subunit of mouse submaxillary gland 7 S nerve growth factor. J Biol Chem. 1981 Sep 10;256(17):9156–9166. [PubMed] [Google Scholar]
- Ullrich A., Gray A., Berman C., Dull T. J. Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature. 1983 Jun 30;303(5920):821–825. doi: 10.1038/303821a0. [DOI] [PubMed] [Google Scholar]
- Varon S., Nomura J., Shooter E. M. The isolation of the mouse nerve growth factor protein in a high molecular weight form. Biochemistry. 1967 Jul;6(7):2202–2209. doi: 10.1021/bi00859a043. [DOI] [PubMed] [Google Scholar]
- Williams R., Gaber B., Gunning J. Raman spectroscopic determination of the secondary structure of crystalline nerve growth factor. J Biol Chem. 1982 Nov 25;257(22):13321–13323. [PubMed] [Google Scholar]