Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Mar;3(3):428–434. doi: 10.1002/pro.5560030307

The primary structure and properties of thioltransferase (glutaredoxin) from human red blood cells.

V V Papov 1, S A Gravina 1, J J Mieyal 1, K Biemann 1
PMCID: PMC2142694  PMID: 8019414

Abstract

Thioltransferase (glutaredoxin) was purified from human red blood cells essentially as described previously (Mieyal JJ et al., 1991a, Biochemistry 30:6088-6097). The primary sequence of the HPLC-pure enzyme was determined by tandem mass spectrometry and found to represent a 105-amino acid protein of molecular weight 11,688 Da. The physicochemical and catalytic properties of this enzyme are common to the group of proteins called glutaredoxins among the family of thiol:disulfide oxidoreductases that also includes thioredoxin and protein disulfide isomerase. Although this human red blood cell glutaredoxin (hRBC Grx) is highly homologous to the 3 other mammalian Grx proteins whose sequences are known (calf thymus, rabbit bone marrow, and pig liver), there are a number of significant differences. Most notably an additional cysteine residue (Cys-7) occurs near the N-terminus of the human enzyme in place of a serine residue in the other proteins. In addition, residue 51 of hRBC Grx displayed a mixture of Asp and Asn. This result is consistent with isoelectric focusing analysis, which revealed 2 distinct bands for either the oxidized or reduced forms of the protein. Because the enzyme was prepared from blood combined from a number of individual donors, it is not clear whether this Asp/Asn ambiguity represents inter-individual variation, gene duplication, or a deamidation artifact of purification.

Full Text

The Full Text of this article is available as a PDF (705.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 1988 Oct;16(1-12):99–111. doi: 10.1002/bms.1200160119. [DOI] [PubMed] [Google Scholar]
  2. Biemann K. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 1990;193:455–479. doi: 10.1016/0076-6879(90)93433-l. [DOI] [PubMed] [Google Scholar]
  3. Craescu C. T., Poyart C., Schaeffer C., Garel M. C., Kister J., Beuzard Y. Covalent binding of glutathione to hemoglobin. II. Functional consequences and structural changes reflected in NMR spectra. J Biol Chem. 1986 Nov 5;261(31):14710–14716. [PubMed] [Google Scholar]
  4. Gan Z. R., Wells W. W. Preparation of homogeneous pig liver thioltransferase by a thiol:disulfide mediated pI shift. Anal Biochem. 1987 Apr;162(1):265–273. doi: 10.1016/0003-2697(87)90036-4. [DOI] [PubMed] [Google Scholar]
  5. Gan Z. R., Wells W. W. Purification and properties of thioltransferase. J Biol Chem. 1986 Jan 25;261(3):996–1001. [PubMed] [Google Scholar]
  6. Gravina S. A., Mieyal J. J. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry. 1993 Apr 6;32(13):3368–3376. doi: 10.1021/bi00064a021. [DOI] [PubMed] [Google Scholar]
  7. Hillenkamp F., Karas M., Beavis R. C., Chait B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991 Dec 15;63(24):1193A–1203A. doi: 10.1021/ac00024a002. [DOI] [PubMed] [Google Scholar]
  8. Hopper S., Johnson R. S., Vath J. E., Biemann K. Glutaredoxin from rabbit bone marrow. Purification, characterization, and amino acid sequence determined by tandem mass spectrometry. J Biol Chem. 1989 Dec 5;264(34):20438–20447. [PubMed] [Google Scholar]
  9. Johnson R. S., Martin S. A., Biemann K., Stults J. T., Watson J. T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem. 1987 Nov 1;59(21):2621–2625. doi: 10.1021/ac00148a019. [DOI] [PubMed] [Google Scholar]
  10. Larson K., Eriksson V., Mannervik B. Thioltransferase from human placenta. Methods Enzymol. 1985;113:520–524. doi: 10.1016/s0076-6879(85)13070-3. [DOI] [PubMed] [Google Scholar]
  11. Makino N., Sugita Y. The structure of partially oxygenated hemoglobin. A highly reactive intermediate toward a sulfhydryl titrant. J Biol Chem. 1982 Jan 10;257(1):163–168. [PubMed] [Google Scholar]
  12. Mieyal J. J., Starke D. W., Gravina S. A., Dothey C., Chung J. S. Thioltransferase in human red blood cells: purification and properties. Biochemistry. 1991 Jun 25;30(25):6088–6097. doi: 10.1021/bi00239a002. [DOI] [PubMed] [Google Scholar]
  13. Mieyal J. J., Starke D. W., Gravina S. A., Hocevar B. A. Thioltransferase in human red blood cells: kinetics and equilibrium. Biochemistry. 1991 Sep 10;30(36):8883–8891. doi: 10.1021/bi00100a023. [DOI] [PubMed] [Google Scholar]
  14. Papayannopoulos I. A., Biemann K. Amino acid sequence of a protease inhibitor isolated from Sarcophaga bullata determined by mass spectrometry. Protein Sci. 1992 Feb;1(2):278–288. doi: 10.1002/pro.5560010210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Papayannopoulos I. A., Gan Z. R., Wells W. W., Biemann K. A revised sequence of calf thymus glutaredoxin. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1448–1454. doi: 10.1016/0006-291x(89)92272-9. [DOI] [PubMed] [Google Scholar]
  16. Ren X., Björnstedt M., Shen B., Ericson M. L., Holmgren A. Mutagenesis of structural half-cystine residues in human thioredoxin and effects on the regulation of activity by selenodiglutathione. Biochemistry. 1993 Sep 21;32(37):9701–9708. doi: 10.1021/bi00088a023. [DOI] [PubMed] [Google Scholar]
  17. Rüegg U. T., Rudinger J. Reductive cleavage of cystine disulfides with tributylphosphine. Methods Enzymol. 1977;47:111–116. doi: 10.1016/0076-6879(77)47012-5. [DOI] [PubMed] [Google Scholar]
  18. Sato K., Asada T., Ishihara M., Kunihiro F., Kammei Y., Kubota E., Costello C. E., Martin S. A., Scoble H. A., Biemann K. High-performance tandem mass spectrometry: calibration and performance of linked scans of a four-sector instrument. Anal Chem. 1987 Jul 1;59(13):1652–1659. doi: 10.1021/ac00140a016. [DOI] [PubMed] [Google Scholar]
  19. Snyder L. M., Fortier N. L., Leb L., McKenney J., Trainor J., Sheerin H., Mohandas N. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes. Biochim Biophys Acta. 1988 Jan 22;937(2):229–240. doi: 10.1016/0005-2736(88)90245-3. [DOI] [PubMed] [Google Scholar]
  20. Wollman E. E., d'Auriol L., Rimsky L., Shaw A., Jacquot J. P., Wingfield P., Graber P., Dessarps F., Robin P., Galibert F. Cloning and expression of a cDNA for human thioredoxin. J Biol Chem. 1988 Oct 25;263(30):15506–15512. [PubMed] [Google Scholar]
  21. Yang Y. F., Gan Z. R., Wells W. W. Cloning and sequencing the cDNA encoding pig liver thioltransferase. Gene. 1989 Nov 30;83(2):339–346. doi: 10.1016/0378-1119(89)90120-0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES