Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Mar;3(3):435–439. doi: 10.1002/pro.5560030308

Beta-sheet and associated turn signatures in vibrational Raman optical activity spectra of proteins.

Z Q Wen 1, L Hecht 1, L D Barron 1
PMCID: PMC2142703  PMID: 7912598

Abstract

We have measured the aqueous solution vibrational Raman optical activity (ROA) spectra of concanavalin A, alpha-chymotrypsin, and beta-lactoglobulin, all of which are rich in beta-sheet, together with that of the model beta-turn peptide L-pro-L-leu-gly-NH2. Possible ROA signatures of antiparallel beta-sheet include a strong sharp positive band at approximately 1,313 cm-1 associated with backbone amide III C alpha H and NH deformations, and an amide I couplet, negative at low wavenumber and positive at high, centered at approximately 1,658 cm-1. Negative ROA bands in the range approximately 1,340-1,380 cm-1, which might originate in glycine CH2 deformations, appear to be characteristic of beta-turns. Our results provide further evidence that ROA is a more incisive probe of protein conformation than conventional vibrational spectroscopy, infrared, or Raman, because only those few vibrational coordinates within a given normal mode that sample the skeletal chirality directly contribute to the corresponding ROA band intensity.

Full Text

The Full Text of this article is available as a PDF (468.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrondo J. L., Young N. M., Mantsch H. H. The solution structure of concanavalin A probed by FT-IR spectroscopy. Biochim Biophys Acta. 1988 Feb 10;952(3):261–268. doi: 10.1016/0167-4838(88)90125-2. [DOI] [PubMed] [Google Scholar]
  2. Barron L. D., Cooper A., Ford S. J., Hecht L., Wen Z. Q. Vibrational Raman optical activity of enzymes. Faraday Discuss. 1992;(93):259–268. doi: 10.1039/fd9929300259. [DOI] [PubMed] [Google Scholar]
  3. Casal H. L., Köhler U., Mantsch H. H. Structural and conformational changes of beta-lactoglobulin B: an infrared spectroscopic study of the effect of pH and temperature. Biochim Biophys Acta. 1988 Nov 2;957(1):11–20. doi: 10.1016/0167-4838(88)90152-5. [DOI] [PubMed] [Google Scholar]
  4. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  5. Naik V. M., Krimm S. Vibrational analysis of peptides, polypeptides, and proteins. XVII. Normal modes of crystalline Pro-Leu-Gly-NH2, a type II beta-turn. Int J Pept Protein Res. 1984 Jan;23(1):1–24. [PubMed] [Google Scholar]
  6. Papiz M. Z., Sawyer L., Eliopoulos E. E., North A. C., Findlay J. B., Sivaprasadarao R., Jones T. A., Newcomer M. E., Kraulis P. J. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. 1986 Nov 27-Dec 3Nature. 324(6095):383–385. doi: 10.1038/324383a0. [DOI] [PubMed] [Google Scholar]
  7. Reed L. L., Johnson P. L. Solid state conformation of the C-terminal tripeptide of oxytocin, L-Pro-L-Leu-Gly-NH2 0.5H2O. J Am Chem Soc. 1973 Oct 31;95(22):7523–7524. doi: 10.1021/ja00803a062. [DOI] [PubMed] [Google Scholar]
  8. Reeke G. N., Jr, Becker J. W., Edelman G. M. The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. J Biol Chem. 1975 Feb 25;250(4):1525–1547. [PubMed] [Google Scholar]
  9. Williams R. W. Protein secondary structure analysis using Raman amide I and amide III spectra. Methods Enzymol. 1986;130:311–331. doi: 10.1016/0076-6879(86)30016-8. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES