Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Mar;3(3):402–410. doi: 10.1002/pro.5560030304

The effect of N-terminal acetylation on the structure of an N-terminal tropomyosin peptide and alpha alpha-tropomyosin.

N J Greenfield 1, W F Stafford 1, S E Hitchcock-DeGregori 1
PMCID: PMC2142710  PMID: 8019411

Abstract

We have used a synthetic peptide consisting of the first 30 residues of striated muscle alpha-tropomyosin, with GlyCys added to the C-terminus, to investigate the effect of N-terminal acetylation on the conformation and stability of the N-terminal domain of the coiled-coil protein. In aqueous buffers at low ionic strength, the reduced, unacetylated 32mer had a very low alpha-helical content (approximately 20%) that was only slightly increased by disulfide crosslinking or N-terminal acetylation. Addition of salt (> 1 M) greatly increased the helical content of the peptide. The CD spectrum, the cooperativity of folding of the peptide, and sedimentation equilibrium ultracentrifugation studies showed that it formed a 2-chained coiled coil at high ionic strength. Disulfide crosslinking and N-terminal acetylation both greatly stabilized the coiled-coil alpha-helical conformation in high salt. Addition of ethanol or trifluoroethanol to solutions of the peptide also increased its alpha-helical content. However, the CD spectra and unfolding behavior of the peptide showed no evidence of coiled-coil formation. In the presence of the organic solvents, N-terminal acetylation had very little effect on the conformation or stability of the peptide. Our results indicate that N-terminal acetylation stabilizes coiled-coil formation in the peptide. The effect cannot be explained by interactions with the "helix-dipole" because the stabilization is observed at very high salt concentrations and is independent of pH. In contrast to the results with the peptide, N-terminal acetylation has only small effects on the overall stability of tropomyosin.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansevin A. T., Roark D. E., Yphantis D. A. Improved ultracentrifuge cells for high-speed sedimentation equilibrium studies with interference optics. Anal Biochem. 1970 Mar;34:237–261. doi: 10.1016/0003-2697(70)90103-x. [DOI] [PubMed] [Google Scholar]
  2. Brenner S. L., Zlotnick A., Stafford W. F., 3rd RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA. J Mol Biol. 1990 Dec 20;216(4):949–964. doi: 10.1016/S0022-2836(99)80013-8. [DOI] [PubMed] [Google Scholar]
  3. CRICK F. H. C. Is alpha-keratin a coiled coil? Nature. 1952 Nov 22;170(4334):882–883. doi: 10.1038/170882b0. [DOI] [PubMed] [Google Scholar]
  4. Cho Y. J., Liu J., Hitchcock-DeGregori S. E. The amino terminus of muscle tropomyosin is a major determinant for function. J Biol Chem. 1990 Jan 5;265(1):538–545. [PubMed] [Google Scholar]
  5. Cooper T. M., Woody R. W. The effect of conformation on the CD of interacting helices: a theoretical study of tropomyosin. Biopolymers. 1990;30(7-8):657–676. doi: 10.1002/bip.360300703. [DOI] [PubMed] [Google Scholar]
  6. Engel M., Williams R. W., Erickson B. W. Designed coiled-coil proteins: synthesis and spectroscopy of two 78-residue alpha-helical dimers. Biochemistry. 1991 Apr 2;30(13):3161–3169. doi: 10.1021/bi00227a002. [DOI] [PubMed] [Google Scholar]
  7. Fairman R., Shoemaker K. R., York E. J., Stewart J. M., Baldwin R. L. Further studies of the helix dipole model: effects of a free alpha-NH3+ or alpha-COO- group on helix stability. Proteins. 1989;5(1):1–7. doi: 10.1002/prot.340050102. [DOI] [PubMed] [Google Scholar]
  8. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  9. Heald R. W., Hitchcock-DeGregori S. E. The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin. J Biol Chem. 1988 Apr 15;263(11):5254–5259. [PubMed] [Google Scholar]
  10. Hitchcock-DeGregori S. E., Heald R. W. Altered actin and troponin binding of amino-terminal variants of chicken striated muscle alpha-tropomyosin expressed in Escherichia coli. J Biol Chem. 1987 Jul 15;262(20):9730–9735. [PubMed] [Google Scholar]
  11. Hitchcock-DeGregori S. E., Lewis S. F., Chou T. M. Tropomyosin lysine reactivities and relationship to coiled-coil structure. Biochemistry. 1985 Jun 18;24(13):3305–3314. doi: 10.1021/bi00334a035. [DOI] [PubMed] [Google Scholar]
  12. Hodges R. S., Saund A. K., Chong P. C., St-Pierre S. A., Reid R. E. Synthetic model for two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization of an 86-residue analog of tropomyosin. J Biol Chem. 1981 Feb 10;256(3):1214–1224. [PubMed] [Google Scholar]
  13. Hodges R. S., Zhou N. E., Kay C. M., Semchuk P. D. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability. Pept Res. 1990 May-Jun;3(3):123–137. [PubMed] [Google Scholar]
  14. Hol W. G. Effects of the alpha-helix dipole upon the functioning and structure of proteins and peptides. Adv Biophys. 1985;19:133–165. doi: 10.1016/0065-227x(85)90053-x. [DOI] [PubMed] [Google Scholar]
  15. Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
  16. Hu J. C., O'Shea E. K., Kim P. S., Sauer R. T. Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. Science. 1990 Dec 7;250(4986):1400–1403. doi: 10.1126/science.2147779. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lau S. Y., Taneja A. K., Hodges R. S. Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J Biol Chem. 1984 Nov 10;259(21):13253–13261. [PubMed] [Google Scholar]
  19. Lees-Miller J. P., Helfman D. M. The molecular basis for tropomyosin isoform diversity. Bioessays. 1991 Sep;13(9):429–437. doi: 10.1002/bies.950130902. [DOI] [PubMed] [Google Scholar]
  20. Lehrer S. S. Effects of an interchain disulfide bond on tropomyosin structure: intrinsic fluorescence and circular dichroism studies. J Mol Biol. 1978 Jan 15;118(2):209–226. doi: 10.1016/0022-2836(78)90413-8. [DOI] [PubMed] [Google Scholar]
  21. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nelson J. W., Kallenbach N. R. Persistence of the alpha-helix stop signal in the S-peptide in trifluoroethanol solutions. Biochemistry. 1989 Jun 13;28(12):5256–5261. doi: 10.1021/bi00438a050. [DOI] [PubMed] [Google Scholar]
  23. O'Neil K. T., Hoess R. H., DeGrado W. F. Design of DNA-binding peptides based on the leucine zipper motif. Science. 1990 Aug 17;249(4970):774–778. doi: 10.1126/science.2389143. [DOI] [PubMed] [Google Scholar]
  24. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  25. O'Shea E. K., Rutkowski R., Kim P. S. Evidence that the leucine zipper is a coiled coil. Science. 1989 Jan 27;243(4890):538–542. doi: 10.1126/science.2911757. [DOI] [PubMed] [Google Scholar]
  26. O'Shea E. K., Rutkowski R., Stafford W. F., 3rd, Kim P. S. Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science. 1989 Aug 11;245(4918):646–648. doi: 10.1126/science.2503872. [DOI] [PubMed] [Google Scholar]
  27. Ozeki S., Kato T., Holtzer M. E., Holtzer A. The kinetics of chain exchange in two-chain coiled coils: alpha alpha- and beta beta-tropomyosin. Biopolymers. 1991 Jul;31(8):957–966. doi: 10.1002/bip.360310805. [DOI] [PubMed] [Google Scholar]
  28. Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
  29. Phillips G. N., Jr, Fillers J. P., Cohen C. Tropomyosin crystal structure and muscle regulation. J Mol Biol. 1986 Nov 5;192(1):111–131. doi: 10.1016/0022-2836(86)90468-7. [DOI] [PubMed] [Google Scholar]
  30. Quiocho F. A., Sack J. S., Vyas N. K. Stabilization of charges on isolated ionic groups sequestered in proteins by polarized peptide units. Nature. 1987 Oct 8;329(6139):561–564. doi: 10.1038/329561a0. [DOI] [PubMed] [Google Scholar]
  31. Scholtz J. M., Baldwin R. L. The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118. doi: 10.1146/annurev.bb.21.060192.000523. [DOI] [PubMed] [Google Scholar]
  32. Scholtz J. M., Qian H., York E. J., Stewart J. M., Baldwin R. L. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers. 1991 Nov;31(13):1463–1470. doi: 10.1002/bip.360311304. [DOI] [PubMed] [Google Scholar]
  33. Shoemaker K. R., Kim P. S., Brems D. N., Marqusee S., York E. J., Chaiken I. M., Stewart J. M., Baldwin R. L. Nature of the charged-group effect on the stability of the C-peptide helix. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2349–2353. doi: 10.1073/pnas.82.8.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
  35. Stone D., Smillie L. B. The amino acid sequence of rabbit skeletal alpha-tropomyosin. The NH2-terminal half and complete sequence. J Biol Chem. 1978 Feb 25;253(4):1137–1148. [PubMed] [Google Scholar]
  36. Whitby F. G., Kent H., Stewart F., Stewart M., Xie X., Hatch V., Cohen C., Phillips G. N., Jr Structure of tropomyosin at 9 angstroms resolution. J Mol Biol. 1992 Sep 20;227(2):441–452. doi: 10.1016/0022-2836(92)90899-u. [DOI] [PubMed] [Google Scholar]
  37. Zhou N. E., Kay C. M., Hodges R. S. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil. Biochemistry. 1993 Mar 30;32(12):3178–3187. doi: 10.1021/bi00063a033. [DOI] [PubMed] [Google Scholar]
  38. Zhou N. E., Zhu B. Y., Kay C. M., Hodges R. S. The two-stranded alpha-helical coiled-coil is an ideal model for studying protein stability and subunit interactions. Biopolymers. 1992 Apr;32(4):419–426. doi: 10.1002/bip.360320419. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES