Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 May;3(5):779–787. doi: 10.1002/pro.5560030507

Comparison of the structures and the crystal contacts of trypanosomal triosephosphate isomerase in four different crystal forms.

K V Kishan 1, J P Zeelen 1, M E Noble 1, T V Borchert 1, R K Wierenga 1
PMCID: PMC2142724  PMID: 8061607

Abstract

Triosephosphate isomerase (TIM) is a dimeric enzyme consisting of 2 identical subunits. Trypanosomal TIM can be crystallized in 4 different spacegroups: P2(1)2(1)2(1), C2(big cell), C2(small cell), and P1. The P1 crystal form only grows in the presence of 1.4 M DMSO; there are 2 DMSO binding sites per subunit. The structures have been refined at a resolution of 1.83 A, 2.10 A, 2.13 A, and 1.80 A, respectively. In the 4 different spacegroups the TIM subunit can be observed in the context of 7 different crystallographic environments. In the C2 cells, the dimer 2-fold axis coincides with a crystallographic 2-fold axis. The similarities and differences of the 7 subunits are discussed. In 6 subunits the flexible loop (loop 6) is open, whereas in the P2(1)2(1)2(1) cell, the flexible loop of subunit 2 is in an almost closed conformation. The crystal contacts in the 4 different crystal forms are predominantly generated by polar residues in loops. A statistical analysis of the residues involved in crystal contacts shows that, in particular, serines are frequently involved in these interactions; 19% of the exposed serines are involved in crystal contacts.

Full Text

The Full Text of this article is available as a PDF (731.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Gilbert W. A., Ponzi D. R., Petsko G. A. The role of mobility in the substrate binding and catalytic machinery of enzymes. Ciba Found Symp. 1983;93:4–24. doi: 10.1002/9780470720752.ch2. [DOI] [PubMed] [Google Scholar]
  2. Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
  3. Borchert T. V., Pratt K., Zeelen J. P., Callens M., Noble M. E., Opperdoes F. R., Michels P. A., Wierenga R. K. Overexpression of trypanosomal triosephosphate isomerase in Escherichia coli and characterisation of a dimer-interface mutant. Eur J Biochem. 1993 Feb 1;211(3):703–710. doi: 10.1111/j.1432-1033.1993.tb17599.x. [DOI] [PubMed] [Google Scholar]
  4. Eigenbrot C., Randal M., Kossiakoff A. A. Structural effects induced by mutagenesis affected by crystal packing factors: the structure of a 30-51 disulfide mutant of basic pancreatic trypsin inhibitor. Proteins. 1992 Sep;14(1):75–87. doi: 10.1002/prot.340140109. [DOI] [PubMed] [Google Scholar]
  5. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  6. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  7. Joseph D., Petsko G. A., Karplus M. Anatomy of a conformational change: hinged "lid" motion of the triosephosphate isomerase loop. Science. 1990 Sep 21;249(4975):1425–1428. doi: 10.1126/science.2402636. [DOI] [PubMed] [Google Scholar]
  8. Lambeir A. M., Opperdoes F. R., Wierenga R. K. Kinetic properties of triose-phosphate isomerase from Trypanosoma brucei brucei. A comparison with the rabbit muscle and yeast enzymes. Eur J Biochem. 1987 Oct 1;168(1):69–74. doi: 10.1111/j.1432-1033.1987.tb13388.x. [DOI] [PubMed] [Google Scholar]
  9. Lolis E., Alber T., Davenport R. C., Rose D., Hartman F. C., Petsko G. A. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry. 1990 Jul 17;29(28):6609–6618. doi: 10.1021/bi00480a009. [DOI] [PubMed] [Google Scholar]
  10. Noble M. E., Zeelen J. P., Wierenga R. K., Mainfroid V., Goraj K., Gohimont A. C., Martial J. A. Structure of triosephosphate isomerase from Escherichia coli determined at 2.6 A resolution. Acta Crystallogr D Biol Crystallogr. 1993 Jul 1;49(Pt 4):403–417. doi: 10.1107/S0907444993002628. [DOI] [PubMed] [Google Scholar]
  11. Noble M. E., Zeelen J. P., Wierenga R. K. Structures of the "open" and "closed" state of trypanosomal triosephosphate isomerase, as observed in a new crystal form: implications for the reaction mechanism. Proteins. 1993 Aug;16(4):311–326. doi: 10.1002/prot.340160402. [DOI] [PubMed] [Google Scholar]
  12. Tronrud D. E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr A. 1992 Nov 1;48(Pt 6):912–916. doi: 10.1107/s0108767392005415. [DOI] [PubMed] [Google Scholar]
  13. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  14. Wierenga R. K., Noble M. E., Davenport R. C. Comparison of the refined crystal structures of liganded and unliganded chicken, yeast and trypanosomal triosephosphate isomerase. J Mol Biol. 1992 Apr 20;224(4):1115–1126. doi: 10.1016/0022-2836(92)90473-w. [DOI] [PubMed] [Google Scholar]
  15. Wierenga R. K., Noble M. E., Postma J. P., Groendijk H., Kalk K. H., Hol W. G., Opperdoes F. R. The crystal structure of the "open" and the "closed" conformation of the flexible loop of trypanosomal triosephosphate isomerase. Proteins. 1991;10(1):33–49. doi: 10.1002/prot.340100105. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES