Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 May;3(5):838–842. doi: 10.1002/pro.5560030513

A conserved glutamic acid bridge in serine carboxypeptidases, belonging to the alpha/beta hydrolase fold, acts as a pH-dependent protein-stabilizing element.

U H Mortensen 1, K Breddam 1
PMCID: PMC2142726  PMID: 7914789

Abstract

Serine endopeptidases of the chymotrypsin family contain a salt bridge situated centrally within the active site, the acidic component of the salt bridge being adjacent to the catalytically essential serine. Serine carboxypeptidases also contain an acidic residue in this position but it interacts through a short hydrogen bond, probably of low-barrier type, with another acidic residue, hence forming a "glutamic acid bridge." In this study, the residues constituting this structural element in carboxypeptidase Y have been replaced by site-specific mutagenesis. It is demonstrated that the glutamic acid bridge contributes significantly to the stability of the enzyme below pH 6.5 and has an adverse effect at pH 9.5. Carboxypeptidase WII from wheat contains 2 such bridges, and it is more stable than carboxypeptidase Y at acidic pH.

Full Text

The Full Text of this article is available as a PDF (474.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birktoft J. J., Kraut J., Freer S. T. A detailed structural comparison between the charge relay system in chymotrypsinogen and in alpha-chymotrypsin. Biochemistry. 1976 Oct 5;15(20):4481–4485. doi: 10.1021/bi00665a023. [DOI] [PubMed] [Google Scholar]
  2. Breddam K. Carboxypeptidase S-1 from Penicillium janthinellum: enzymatic properties in hydrolysis and aminolysis reactions. Carlsberg Res Commun. 1988;53(5):309–320. doi: 10.1007/BF02904436. [DOI] [PubMed] [Google Scholar]
  3. Cleland W. W. Low-barrier hydrogen bonds and low fractionation factor bases in enzymatic reactions. Biochemistry. 1992 Jan 21;31(2):317–319. doi: 10.1021/bi00117a001. [DOI] [PubMed] [Google Scholar]
  4. Dewan J. C., Mikami B., Hirose M., Sacchettini J. C. Structural evidence for a pH-sensitive dilysine trigger in the hen ovotransferrin N-lobe: implications for transferrin iron release. Biochemistry. 1993 Nov 16;32(45):11963–11968. doi: 10.1021/bi00096a004. [DOI] [PubMed] [Google Scholar]
  5. Fersht A. R. Conformational equilibria in -and -chymotrypsin. The energetics and importance of the salt bridge. J Mol Biol. 1972 Mar 14;64(2):497–509. doi: 10.1016/0022-2836(72)90513-x. [DOI] [PubMed] [Google Scholar]
  6. Matthews B. W., Sigler P. B., Henderson R., Blow D. M. Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature. 1967 May 13;214(5089):652–656. doi: 10.1038/214652a0. [DOI] [PubMed] [Google Scholar]
  7. Mortensen U. H., Remington S. J., Breddam K. Site-directed mutagenesis on (serine) carboxypeptidase Y. A hydrogen bond network stabilizes the transition state by interaction with the C-terminal carboxylate group of the substrate. Biochemistry. 1994 Jan 18;33(2):508–517. doi: 10.1021/bi00168a016. [DOI] [PubMed] [Google Scholar]
  8. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  9. Schrag J. D., Cygler M. 1.8 A refined structure of the lipase from Geotrichum candidum. J Mol Biol. 1993 Mar 20;230(2):575–591. doi: 10.1006/jmbi.1993.1171. [DOI] [PubMed] [Google Scholar]
  10. Schrag J. D., Li Y. G., Wu S., Cygler M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature. 1991 Jun 27;351(6329):761–764. doi: 10.1038/351761a0. [DOI] [PubMed] [Google Scholar]
  11. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  12. Svendsen I., Hofmann T., Endrizzi J., Remington S. J., Breddam K. The primary structure of carboxypeptidase S1 from Penicillium janthinellum. FEBS Lett. 1993 Oct 25;333(1-2):39–43. doi: 10.1016/0014-5793(93)80371-z. [DOI] [PubMed] [Google Scholar]
  13. Sørensen S. B., Svendsen I., Breddam K. Primary structure of carboxypeptidase III from malted barley. Carlsberg Res Commun. 1989;54(5):193–202. doi: 10.1007/BF02904473. [DOI] [PubMed] [Google Scholar]
  14. Winther J. R., Sørensen P. Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9330–9334. doi: 10.1073/pnas.88.20.9330. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES