Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 May;3(5):757–768. doi: 10.1002/pro.5560030505

Modeling studies of the change in conformation required for cleavage of limited proteolytic sites.

S J Hubbard 1, F Eisenmenger 1, J M Thornton 1
PMCID: PMC2142727  PMID: 7520312

Abstract

Previous analyses of limited proteolytic sites within native, folded protein structures have shown that a significant conformational change is required in order to facilitate binding into the active site of the attacking proteinase. For the serine proteinases, the optimum conformation to match the proteinase binding-site geometry has been well characterized crystallographically by the conserved main-chain geometry of the reactive site loops of their protein inhibitors. A good substrate must adopt a conformation very similar to this "target" main-chain conformation prior to cleavage. Using a "loop-closure" modeling approach, we have tested the ability of a set of tryptic-limited proteolytic sites to achieve this target conformation and further tested their suitability for cleavage. The results show that in most cases, significant changes in the conformation of at least 12 residues are required. All the putative tryptic cleavage sites in 1 protein, elastase, were also modeled and tested to compare the results to the actual nicksite in that protein. These results strongly suggest that large local motions proximate to the scissile bond are required for proteolysis, and it is this ability to unfold locally without perturbing the overall protein conformation that is the prime determinant for limited proteolysis.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Blundell T., Carney D., Gardner S., Hayes F., Howlin B., Hubbard T., Overington J., Singh D. A., Sibanda B. L., Sutcliffe M. 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design. Eur J Biochem. 1988 Mar 15;172(3):513–520. doi: 10.1111/j.1432-1033.1988.tb13917.x. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Fehlhammer H., Huber R. Crystal structure of bovine trypsinogen at 1-8 A resolution. I. Data collection, application of patterson search techniques and preliminary structural interpretation. J Mol Biol. 1976 Sep 15;106(2):325–335. doi: 10.1016/0022-2836(76)90089-9. [DOI] [PubMed] [Google Scholar]
  4. Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992 Mar 1;204(2):433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x. [DOI] [PubMed] [Google Scholar]
  5. Collura V., Higo J., Garnier J. Modeling of protein loops by simulated annealing. Protein Sci. 1993 Sep;2(9):1502–1510. doi: 10.1002/pro.5560020915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drabikowski W., Brzeska H., Venyaminov SYu Tryptic fragments of calmodulin. Ca2+- and Mg2+-induced conformational changes. J Biol Chem. 1982 Oct 10;257(19):11584–11590. [PubMed] [Google Scholar]
  7. Ghelis C., Tempete-Gaillourdet M., Yon J. M. The folding of pancreatic elastase: independent domain refolding and inter-domain interaction. Biochem Biophys Res Commun. 1978 Sep 14;84(1):31–36. doi: 10.1016/0006-291x(78)90258-9. [DOI] [PubMed] [Google Scholar]
  8. Hardy F., Vriend G., van der Vinne B., Frigerio F., Grandi G., Venema G., Eijsink V. G. The effect of engineering surface loops on the thermal stability of Bacillus subtilis neutral protease. Protein Eng. 1994 Mar;7(3):425–430. doi: 10.1093/protein/7.3.425. [DOI] [PubMed] [Google Scholar]
  9. Hubbard S. J., Campbell S. F., Thornton J. M. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol. 1991 Jul 20;220(2):507–530. doi: 10.1016/0022-2836(91)90027-4. [DOI] [PubMed] [Google Scholar]
  10. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  11. James M. N., Sielecki A. R., Brayer G. D., Delbaere L. T., Bauer C. A. Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 A resolution. A model for serine protease catalysis. J Mol Biol. 1980 Nov 25;144(1):43–88. doi: 10.1016/0022-2836(80)90214-4. [DOI] [PubMed] [Google Scholar]
  12. Jones T. A., Thirup S. Using known substructures in protein model building and crystallography. EMBO J. 1986 Apr;5(4):819–822. doi: 10.1002/j.1460-2075.1986.tb04287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977;46:331–358. doi: 10.1146/annurev.bi.46.070177.001555. [DOI] [PubMed] [Google Scholar]
  14. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  15. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  16. McLachlan A. D. Gene duplications in the structural evolution of chymotrypsin. J Mol Biol. 1979 Feb 15;128(1):49–79. doi: 10.1016/0022-2836(79)90308-5. [DOI] [PubMed] [Google Scholar]
  17. Moult J., James M. N. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins. 1986 Oct;1(2):146–163. doi: 10.1002/prot.340010207. [DOI] [PubMed] [Google Scholar]
  18. Novotný J., Bruccoleri R. E. Correlation among sites of limited proteolysis, enzyme accessibility and segmental mobility. FEBS Lett. 1987 Jan 26;211(2):185–189. doi: 10.1016/0014-5793(87)81433-3. [DOI] [PubMed] [Google Scholar]
  19. Rooman M. J., Kocher J. P., Wodak S. J. Extracting information on folding from the amino acid sequence: accurate predictions for protein regions with preferred conformation in the absence of tertiary interactions. Biochemistry. 1992 Oct 27;31(42):10226–10238. doi: 10.1021/bi00157a009. [DOI] [PubMed] [Google Scholar]
  20. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  21. Sklenar H., Lavery R., Pullman B. The flexibility of the nucleic acids: (I). "SIR", a novel approach to the variation of polymer geometry in constrained systems. J Biomol Struct Dyn. 1986 Apr;3(5):967–987. doi: 10.1080/07391102.1986.10508477. [DOI] [PubMed] [Google Scholar]
  22. Taniuchi H., Anfinsen C. B., Sodja A. Nuclease-T: an active derivative of staphylococcal nuclease composed of two noncovalently bonded peptide fragments. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1235–1242. doi: 10.1073/pnas.58.3.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vriend G., Eijsink V. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases. J Comput Aided Mol Des. 1993 Aug;7(4):367–396. doi: 10.1007/BF02337558. [DOI] [PubMed] [Google Scholar]
  24. Winchester B. G., Mathias A. P., Rabin B. R. Study of the thermal denaturation of ribonuclease A by differential thermal analysis and susceptibility to proteolysis. Biochem J. 1970 Apr;117(2):299–307. doi: 10.1042/bj1170299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wlodawer A., Bott R., Sjölin L. The refined crystal structure of ribonuclease A at 2.0 A resolution. J Biol Chem. 1982 Feb 10;257(3):1325–1332. [PubMed] [Google Scholar]
  26. Zheng Q., Rosenfeld R., Vajda S., DeLisi C. Determining protein loop conformation using scaling-relaxation techniques. Protein Sci. 1993 Aug;2(8):1242–1248. doi: 10.1002/pro.5560020806. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES