Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Dec;3(12):2358–2365. doi: 10.1002/pro.5560031220

Determinants of protein side-chain packing.

R Tanimura 1, A Kidera 1, H Nakamura 1
PMCID: PMC2142755  PMID: 7756990

Abstract

The problem of protein side-chain packing for a given backbone trace is investigated using 3 different prediction models. The first requires an exhaustive search of all possible combinations of side-chain conformers, using the dead-end elimination theorem. The second considers only side-chain-backbone interactions, whereas the third neglects side-chain-backbone interactions and instead keeps side-chain-side-chain interactions. Predictions of side-chain conformations for 11 proteins using all 3 models show that removal of side-chain-side-chain interactions does not cause a large decrease in the prediction accuracy, whereas the model having only side-chain-side-chain interactions still retains a significant level of accuracy. These results suggest that the 2 classes of interactions, side-chain-backbone and side-chain-side-chain, are consistent with each other and work concurrently to stabilize the native conformations. This is confirmed by analyses of energy spectra of the side-chain conformations derived from the fourth prediction model, the Independent model, which gives almost the same quality of the prediction as the dead-end elimination. The analyses indicate that the 2 classes of interactions simultaneously increase the energy difference between the native and nonnative conformations.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Bryngelson J. D., Wolynes P. G. Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7524–7528. doi: 10.1073/pnas.84.21.7524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunbrack R. L., Jr, Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol. 1993 Mar 20;230(2):543–574. doi: 10.1006/jmbi.1993.1170. [DOI] [PubMed] [Google Scholar]
  4. Eisenmenger F., Argos P., Abagyan R. A method to configure protein side-chains from the main-chain trace in homology modelling. J Mol Biol. 1993 Jun 5;231(3):849–860. doi: 10.1006/jmbi.1993.1331. [DOI] [PubMed] [Google Scholar]
  5. Go N. Theoretical studies of protein folding. Annu Rev Biophys Bioeng. 1983;12:183–210. doi: 10.1146/annurev.bb.12.060183.001151. [DOI] [PubMed] [Google Scholar]
  6. Holm L., Sander C. Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors. J Mol Biol. 1991 Mar 5;218(1):183–194. doi: 10.1016/0022-2836(91)90883-8. [DOI] [PubMed] [Google Scholar]
  7. Kidera A., Inaka K., Matsushima M., Go N. Response of dynamic structure to removal of a disulfide bond: normal mode refinement of C77A/C95A mutant of human lysozyme. Protein Sci. 1994 Jan;3(1):92–102. doi: 10.1002/pro.5560030112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koehl P., Delarue M. Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J Mol Biol. 1994 Jun 3;239(2):249–275. doi: 10.1006/jmbi.1994.1366. [DOI] [PubMed] [Google Scholar]
  9. Lasters I., Desmet J. The fuzzy-end elimination theorem: correctly implementing the side chain placement algorithm based on the dead-end elimination theorem. Protein Eng. 1993 Sep;6(7):717–722. doi: 10.1093/protein/6.7.717. [DOI] [PubMed] [Google Scholar]
  10. Leach A. R. Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol. 1994 Jan 7;235(1):345–356. doi: 10.1016/s0022-2836(05)80038-5. [DOI] [PubMed] [Google Scholar]
  11. Lee C., Subbiah S. Prediction of protein side-chain conformation by packing optimization. J Mol Biol. 1991 Jan 20;217(2):373–388. doi: 10.1016/0022-2836(91)90550-p. [DOI] [PubMed] [Google Scholar]
  12. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  13. Reid L. S., Thornton J. M. Rebuilding flavodoxin from C alpha coordinates: a test study. Proteins. 1989;5(2):170–182. doi: 10.1002/prot.340050212. [DOI] [PubMed] [Google Scholar]
  14. Shrake A., Rupley J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973 Sep 15;79(2):351–371. doi: 10.1016/0022-2836(73)90011-9. [DOI] [PubMed] [Google Scholar]
  15. Summers N. L., Karplus M. Construction of side-chains in homology modelling. Application to the C-terminal lobe of rhizopuspepsin. J Mol Biol. 1989 Dec 20;210(4):785–811. doi: 10.1016/0022-2836(89)90109-5. [DOI] [PubMed] [Google Scholar]
  16. Tuffery P., Etchebest C., Hazout S., Lavery R. A new approach to the rapid determination of protein side chain conformations. J Biomol Struct Dyn. 1991 Jun;8(6):1267–1289. doi: 10.1080/07391102.1991.10507882. [DOI] [PubMed] [Google Scholar]
  17. Wilson C., Gregoret L. M., Agard D. A. Modeling side-chain conformation for homologous proteins using an energy-based rotamer search. J Mol Biol. 1993 Feb 20;229(4):996–1006. doi: 10.1006/jmbi.1993.1100. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES