Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Dec;3(12):2280–2293. doi: 10.1002/pro.5560031213

Structure-function analysis of human IL-6: identification of two distinct regions that are important for receptor binding.

A Hammacher 1, L D Ward 1, J Weinstock 1, H Treutlein 1, K Yasukawa 1, R J Simpson 1
PMCID: PMC2142761  PMID: 7538847

Abstract

Interleukin-6 (IL-6) is a multifunctional cytokine that plays an important role in host defense. It has been predicted that IL-6 may fold as a 4 alpha-helix bundle structure with up-up-down-down topology. Despite a high degree of sequence similarity (42%) the human and mouse IL-6 polypeptides display distinct species-specific activities. Although human IL-6 (hIL-6) is active in both human and mouse cell assays, mouse IL-6 (mIL-6) is not active on human cells. Previously, we demonstrated that the 5 C-terminal residues of mIL-6 are important for activity, conformation, and stability (Ward LD et al., 1993, Protein Sci 2:1472-1481). To further probe the structure-function relationship of this cytokine, we have constructed several human/mouse IL-6 hybrid molecules. Restriction endonuclease sites were introduced and used to ligate the human and mouse sequences at junction points situated at Leu-62 (Lys-65 in mIL-6) in the putative connecting loop AB between helices A and B, at Arg-113 (Val-117 in mIL-6) at the N-terminal end of helix C, at Lys-150 (Asp-152 in mIL-6) in the connecting loop CD between helices C and D, and at Leu-178 (Thr-180 in mIL-6) in helix D. Hybrid molecules consisting of various combinations of these fragments were constructed, expressed, and purified to homogeneity. The conformational integrity of the IL-6 hybrids was assessed by far-UV CD. Analysis of their biological activity in a human bioassay (using the HepG2 cell line), a mouse bioassay (using the 7TD1 cell line), and receptor binding properties indicates that at least 2 regions of hIL-6, residues 178-184 in helix D and residues 63-113 in the region incorporating part of the putative connecting loop AB through to the beginning of helix C, are critical for efficient binding to the human IL-6 receptor. For human IL-6, it would appear that interactions between residues Ala-180, Leu-181, and Met-184 and residues in the N-terminal region may be critical for maintaining the structure of the molecule; replacement of these residues with the corresponding 3 residues in mouse IL-6 correlated with a significant loss of alpha-helical content and a 200-fold reduction in activity in the mouse bioassay. A homology model of mIL-6 based on the X-ray structure of human granulocyte colony-stimulating factor is presented.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S., Taga T., Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78. doi: 10.1016/s0065-2776(08)60532-5. [DOI] [PubMed] [Google Scholar]
  2. Arcone R., Fontaine V., Coto I., Brakenhoff J. P., Content J., Ciliberto G. Internal deletions of amino acids 29-42 of human interleukin-6 (IL-6) differentially affect bioactivity and folding. FEBS Lett. 1991 Aug 19;288(1-2):197–200. doi: 10.1016/0014-5793(91)81033-5. [DOI] [PubMed] [Google Scholar]
  3. Bazan J. F. Haemopoietic receptors and helical cytokines. Immunol Today. 1990 Oct;11(10):350–354. doi: 10.1016/0167-5699(90)90139-z. [DOI] [PubMed] [Google Scholar]
  4. Bazan J. F. Neuropoietic cytokines in the hematopoietic fold. Neuron. 1991 Aug;7(2):197–208. doi: 10.1016/0896-6273(91)90258-2. [DOI] [PubMed] [Google Scholar]
  5. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  6. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brakenhoff J. P., Hart M., Aarden L. A. Analysis of human IL-6 mutants expressed in Escherichia coli. Biologic activities are not affected by deletion of amino acids 1-28. J Immunol. 1989 Aug 15;143(4):1175–1182. [PubMed] [Google Scholar]
  8. Brakenhoff J. P., Hart M., De Groot E. R., Di Padova F., Aarden L. A. Structure-function analysis of human IL-6. Epitope mapping of neutralizing monoclonal antibodies with amino- and carboxyl-terminal deletion mutants. J Immunol. 1990 Jul 15;145(2):561–568. [PubMed] [Google Scholar]
  9. Brakenhoff J. P., de Hon F. D., Fontaine V., ten Boekel E., Schooltink H., Rose-John S., Heinrich P. C., Content J., Aarden L. A. Development of a human interleukin-6 receptor antagonist. J Biol Chem. 1994 Jan 7;269(1):86–93. [PubMed] [Google Scholar]
  10. Clogston C. L., Boone T. C., Crandall B. C., Mendiaz E. A., Lu H. S. Disulfide structures of human interleukin-6 are similar to those of human granulocyte colony stimulating factor. Arch Biochem Biophys. 1989 Jul;272(1):144–151. doi: 10.1016/0003-9861(89)90205-1. [DOI] [PubMed] [Google Scholar]
  11. Coulie P. G., Stevens M., Van Snick J. High- and low-affinity receptors for murine interleukin 6. Distinct distribution on B and T cells. Eur J Immunol. 1989 Nov;19(11):2107–2114. doi: 10.1002/eji.1830191121. [DOI] [PubMed] [Google Scholar]
  12. D'Alessandro F., Colamonici O. R., Nordan R. P. Direct association of interleukin-6 with a 130-kDa component of the interleukin-6 receptor system. J Biol Chem. 1993 Jan 25;268(3):2149–2153. [PubMed] [Google Scholar]
  13. Diederichs K., Boone T., Karplus P. A. Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor. Science. 1991 Dec 20;254(5039):1779–1782. doi: 10.1126/science.1837174. [DOI] [PubMed] [Google Scholar]
  14. Ekida T., Nishimura C., Masuda S., Itoh S., Shimada I., Arata Y. A receptor-binding peptide from human interleukin-6: isolation and a proton nuclear magnetic resonance study. Biochem Biophys Res Commun. 1992 Nov 30;189(1):211–220. doi: 10.1016/0006-291x(92)91546-3. [DOI] [PubMed] [Google Scholar]
  15. Fontaine V., Brakenhoff J., De Wit L., Arcone R., Ciliberto G., Content J. Internal deletions in human interleukin-6: structure-function analysis. Gene. 1991 Aug 15;104(2):227–234. doi: 10.1016/0378-1119(91)90254-9. [DOI] [PubMed] [Google Scholar]
  16. Fontaine V., Savino R., Arcone R., de Wit L., Brakenhoff J. P., Content J., Ciliberto G. Involvement of the Arg179 in the active site of human IL-6. Eur J Biochem. 1993 Feb 1;211(3):749–755. doi: 10.1111/j.1432-1033.1993.tb17605.x. [DOI] [PubMed] [Google Scholar]
  17. Heinrich P. C., Castell J. V., Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990 Feb 1;265(3):621–636. doi: 10.1042/bj2650621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hibi M., Murakami M., Saito M., Hirano T., Taga T., Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 1990 Dec 21;63(6):1149–1157. doi: 10.1016/0092-8674(90)90411-7. [DOI] [PubMed] [Google Scholar]
  19. Hill C. P., Osslund T. D., Eisenberg D. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5167–5171. doi: 10.1073/pnas.90.11.5167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda T., Kashiwamura S., Nakajima K., Koyama K., Iwamatsu A. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986 Nov 6;324(6092):73–76. doi: 10.1038/324073a0. [DOI] [PubMed] [Google Scholar]
  21. Hogeweg P., Hesper B. The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J Mol Evol. 1984;20(2):175–186. doi: 10.1007/BF02257378. [DOI] [PubMed] [Google Scholar]
  22. Ida N., Sakurai S., Hosaka T., Hosoi K., Kunitomo T., Shimazu T., Maruyama T., Matsuura Y., Kohase M. Establishment of strongly neutralizing monoclonal antibody to human interleukin-6 and its epitope analysis. Biochem Biophys Res Commun. 1989 Dec 15;165(2):728–734. doi: 10.1016/s0006-291x(89)80027-0. [DOI] [PubMed] [Google Scholar]
  23. Jilka R. L., Hangoc G., Girasole G., Passeri G., Williams D. C., Abrams J. S., Boyce B., Broxmeyer H., Manolagas S. C. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992 Jul 3;257(5066):88–91. doi: 10.1126/science.1621100. [DOI] [PubMed] [Google Scholar]
  24. Johnsson B., Löfås S., Lindquist G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem. 1991 Nov 1;198(2):268–277. doi: 10.1016/0003-2697(91)90424-r. [DOI] [PubMed] [Google Scholar]
  25. Kaushansky K., Karplus P. A. Hematopoietic growth factors: understanding functional diversity in structural terms. Blood. 1993 Dec 1;82(11):3229–3240. [PubMed] [Google Scholar]
  26. Klein B., Wijdenes J., Zhang X. G., Jourdan M., Boiron J. M., Brochier J., Liautard J., Merlin M., Clement C., Morel-Fournier B. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood. 1991 Sep 1;78(5):1198–1204. [PubMed] [Google Scholar]
  27. Krüttgen A., Rose-John S., Dufhues G., Bender S., Lütticken C., Freyer P., Heinrich P. C. The three carboxy-terminal amino acids of human interleukin-6 are essential for its biological activity. FEBS Lett. 1990 Oct 29;273(1-2):95–98. doi: 10.1016/0014-5793(90)81059-w. [DOI] [PubMed] [Google Scholar]
  28. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  29. Leebeek F. W., Fowlkes D. M. Construction and functional analysis of hybrid interleukin-6 variants. Characterization of the role of the C-terminus for species specificity. FEBS Lett. 1992 Jul 20;306(2-3):262–264. doi: 10.1016/0014-5793(92)81013-c. [DOI] [PubMed] [Google Scholar]
  30. Leebeek F. W., Kariya K., Schwabe M., Fowlkes D. M. Identification of a receptor binding site in the carboxyl terminus of human interleukin-6. J Biol Chem. 1992 Jul 25;267(21):14832–14838. [PubMed] [Google Scholar]
  31. Li X., Rock F., Chong P., Cockle S., Keating A., Ziltener H., Klein M. Structure-function analysis of the C-terminal segment of human interleukin-6. J Biol Chem. 1993 Oct 25;268(30):22377–22384. [PubMed] [Google Scholar]
  32. Lütticken C., Krüttgen A., Möller C., Heinrich P. C., Rose-John S. Evidence for the importance of a positive charge and an alpha-helical structure of the C-terminus for biological activity of human IL-6. FEBS Lett. 1991 May 6;282(2):265–267. doi: 10.1016/0014-5793(91)80491-k. [DOI] [PubMed] [Google Scholar]
  33. Morton C. J., Simpson R. J., Norton R. S. Solution structure of synthetic peptides corresponding to the C-terminal helix of interleukin-6. Eur J Biochem. 1994 Jan 15;219(1-2):97–107. doi: 10.1111/j.1432-1033.1994.tb19919.x. [DOI] [PubMed] [Google Scholar]
  34. Murakami M., Hibi M., Nakagawa N., Nakagawa T., Yasukawa K., Yamanishi K., Taga T., Kishimoto T. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science. 1993 Jun 18;260(5115):1808–1810. doi: 10.1126/science.8511589. [DOI] [PubMed] [Google Scholar]
  35. Nicola N. A., Metcalf D. Binding of the differentiation-inducer, granulocyte-colony-stimulating factor, to responsive but not unresponsive leukemic cell lines. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3765–3769. doi: 10.1073/pnas.81.12.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nishimura C., Ekida T., Nomura K., Sakamoto K., Suzuki H., Yasukawa K., Kishimoto T., Arata Y. Role of leucine residues in the C-terminal region of human interleukin-6 in the biological activity. FEBS Lett. 1992 Oct 26;311(3):271–275. doi: 10.1016/0014-5793(92)81118-6. [DOI] [PubMed] [Google Scholar]
  37. Nishimura C., Futatsugi K., Yasukawa K., Kishimoto T., Arata Y. Site-specific mutagenesis of human interleukin-6 and its biological activity. FEBS Lett. 1991 Apr 9;281(1-2):167–169. doi: 10.1016/0014-5793(91)80384-f. [DOI] [PubMed] [Google Scholar]
  38. O'Shannessy D. J., Brigham-Burke M., Soneson K. K., Hensley P., Brooks I. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Anal Biochem. 1993 Aug 1;212(2):457–468. doi: 10.1006/abio.1993.1355. [DOI] [PubMed] [Google Scholar]
  39. Savino R., Lahm A., Giorgio M., Cabibbo A., Tramontano A., Ciliberto G. Saturation mutagenesis of the human interleukin 6 receptor-binding site: implications for its three-dimensional structure. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4067–4071. doi: 10.1073/pnas.90.9.4067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Simpson R. J., Moritz R. L., Rubira M. R., Van Snick J. Murine hybridoma/plasmacytoma growth factor. Complete amino-acid sequence and relation to human interleukin-6. Eur J Biochem. 1988 Sep 1;176(1):187–197. doi: 10.1111/j.1432-1033.1988.tb14267.x. [DOI] [PubMed] [Google Scholar]
  41. Simpson R. J., Moritz R. L., Van Roost, Van Snick J. Characterization of a recombinant murine interleukin-6: assignment of disulfide bonds. Biochem Biophys Res Commun. 1988 Nov 30;157(1):364–372. doi: 10.1016/s0006-291x(88)80056-1. [DOI] [PubMed] [Google Scholar]
  42. Smith D. K., Treutlein H. R., Maurer T., Owczarek C. M., Layton M. J., Nicola N. A., Norton R. S. Homology modelling and 1H NMR studies of human leukaemia inhibitory factor. FEBS Lett. 1994 Aug 22;350(2-3):275–280. doi: 10.1016/0014-5793(94)00785-3. [DOI] [PubMed] [Google Scholar]
  43. Sugita T., Totsuka T., Saito M., Yamasaki K., Taga T., Hirano T., Kishimoto T. Functional murine interleukin 6 receptor with the intracisternal A particle gene product at its cytoplasmic domain. Its possible role in plasmacytomagenesis. J Exp Med. 1990 Jun 1;171(6):2001–2009. doi: 10.1084/jem.171.6.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taga T., Hibi M., Hirata Y., Yamasaki K., Yasukawa K., Matsuda T., Hirano T., Kishimoto T. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 1989 Aug 11;58(3):573–581. doi: 10.1016/0092-8674(89)90438-8. [DOI] [PubMed] [Google Scholar]
  45. Tamura T., Udagawa N., Takahashi N., Miyaura C., Tanaka S., Yamada Y., Koishihara Y., Ohsugi Y., Kumaki K., Taga T. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11924–11928. doi: 10.1073/pnas.90.24.11924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Van Snick J., Cayphas S., Szikora J. P., Renauld J. C., Van Roost E., Boon T., Simpson R. J. cDNA cloning of murine interleukin-HP1: homology with human interleukin 6. Eur J Immunol. 1988 Feb;18(2):193–197. doi: 10.1002/eji.1830180202. [DOI] [PubMed] [Google Scholar]
  47. Van Snick J., Cayphas S., Vink A., Uyttenhove C., Coulie P. G., Rubira M. R., Simpson R. J. Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9679–9683. doi: 10.1073/pnas.83.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990;8:253–278. doi: 10.1146/annurev.iy.08.040190.001345. [DOI] [PubMed] [Google Scholar]
  49. Ward L. D., Hammacher A., Zhang J. G., Weinstock J., Yasukawa K., Morton C. J., Norton R. S., Simpson R. J. Role of the C-terminus in the activity, conformation, and stability of interleukin-6. Protein Sci. 1993 Sep;2(9):1472–1481. doi: 10.1002/pro.5560020911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ward L. D., Howlett G. J., Discolo G., Yasukawa K., Hammacher A., Moritz R. L., Simpson R. J. High affinity interleukin-6 receptor is a hexameric complex consisting of two molecules each of interleukin-6, interleukin-6 receptor, and gp-130. J Biol Chem. 1994 Sep 16;269(37):23286–23289. [PubMed] [Google Scholar]
  51. Yamasaki K., Taga T., Hirata Y., Yawata H., Kawanishi Y., Seed B., Taniguchi T., Hirano T., Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science. 1988 Aug 12;241(4867):825–828. doi: 10.1126/science.3136546. [DOI] [PubMed] [Google Scholar]
  52. Yasueda H., Miyasaka Y., Shimamura T., Matsui H. Effect of semi-random mutagenesis at the C-terminal 4 amino acids of human interleukin-6 on its biological activity. Biochem Biophys Res Commun. 1992 Aug 31;187(1):18–25. doi: 10.1016/s0006-291x(05)81452-4. [DOI] [PubMed] [Google Scholar]
  53. Yasukawa K., Saito T., Fukunaga T., Sekimori Y., Koishihara Y., Fukui H., Ohsugi Y., Matsuda T., Yawata H., Hirano T. Purification and characterization of soluble human IL-6 receptor expressed in CHO cells. J Biochem. 1990 Oct;108(4):673–676. doi: 10.1093/oxfordjournals.jbchem.a123261. [DOI] [PubMed] [Google Scholar]
  54. Zhang J. G., Moritz R. L., Reid G. E., Ward L. D., Simpson R. J. Purification and characterization of a recombinant murine interleukin-6. Isolation of N- and C-terminally truncated forms. Eur J Biochem. 1992 Aug 1;207(3):903–913. doi: 10.1111/j.1432-1033.1992.tb17123.x. [DOI] [PubMed] [Google Scholar]
  55. de Vos A. M., Ultsch M., Kossiakoff A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992 Jan 17;255(5042):306–312. doi: 10.1126/science.1549776. [DOI] [PubMed] [Google Scholar]
  56. van Dam M., Müllberg J., Schooltink H., Stoyan T., Brakenhoff J. P., Graeve L., Heinrich P. C., Rose-John S. Structure-function analysis of interleukin-6 utilizing human/murine chimeric molecules. Involvement of two separate domains in receptor binding. J Biol Chem. 1993 Jul 15;268(20):15285–15290. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES