Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Dec;3(12):2185–2193. doi: 10.1002/pro.5560031204

Six new candidate members of the alpha/beta twisted open-sheet family detected by sequence similarity to flavodoxin.

R Grandori 1, J Carey 1
PMCID: PMC2142762  PMID: 7756978

Abstract

Strong sequence similarity has been reported among WrbA (the Trp repressor-binding protein of Escherichia coli); Ycp4, a protein of unknown function from the budding yeast Saccharomyces cerevisiae; P25, the pap1-dependent protein of the fission yeast Schizosaccharomyces pombe; and the translation product of a partial cDNA sequence from rice seedling root (Oryza sativa, locus Ricr02421a; here referred to as RicR). Further homology search with the profile method indicates that all the above sequences are related to the flavodoxin family and, in turn, allows detection of the recently proposed flavodoxin-like proteins from E. coli, MioC and the hypothetical protein YihB. We discuss sequence conservation with reference to the known 3-dimensional structures of flavodoxins. Conserved sequence and hydrophobicity patterns, as well as residue-pair interaction potentials, strongly support the hypothesis that these proteins share the alpha/beta twisted open-sheet fold typical of flavodoxins, with an additional alpha/beta unit in the WrbA family. On the basis of the proposed structural homology, we discuss the details of the putative FMN-binding sites. Our analysis also suggests that the helix-turn-helix motif we identified previously in the C-terminal region of the WrbA family is unlikely to reflect a DNA-binding function of this new protein family.

Full Text

The Full Text of this article is available as a PDF (965.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bewley M. C., Boustead C. M., Walker J. H., Waller D. A., Huber R. Structure of chicken annexin V at 2.25-A resolution. Biochemistry. 1993 Apr 20;32(15):3923–3929. doi: 10.1021/bi00066a011. [DOI] [PubMed] [Google Scholar]
  2. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  3. Burnett R. M., Darling G. D., Kendall D. S., LeQuesne M. E., Mayhew S. G., Smith W. W., Ludwig M. L. The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution. J Biol Chem. 1974 Jul 25;249(14):4383–4392. [PubMed] [Google Scholar]
  4. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuyama K., Matsubara H., Rogers L. J. Crystal structure of oxidized flavodoxin from a red alga Chondrus crispus refined at 1.8 A resolution. Description of the flavin mononucleotide binding site. J Mol Biol. 1992 Jun 5;225(3):775–789. doi: 10.1016/0022-2836(92)90400-e. [DOI] [PubMed] [Google Scholar]
  6. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  7. Gribskov M., Lüthy R., Eisenberg D. Profile analysis. Methods Enzymol. 1990;183:146–159. doi: 10.1016/0076-6879(90)83011-w. [DOI] [PubMed] [Google Scholar]
  8. Gribskov M., McLachlan A. D., Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355–4358. doi: 10.1073/pnas.84.13.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Koonin E. V., Bork P. FMN- or DNA-binding? Trends Biochem Sci. 1994 Jun;19(6):234–235. doi: 10.1016/0968-0004(94)90145-7. [DOI] [PubMed] [Google Scholar]
  11. Koonin E. V., Bork P., Sander C. Yeast chromosome III: new gene functions. EMBO J. 1994 Feb 1;13(3):493–503. doi: 10.1002/j.1460-2075.1994.tb06287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  13. Leslie A. G. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution. J Mol Biol. 1990 May 5;213(1):167–186. doi: 10.1016/S0022-2836(05)80129-9. [DOI] [PubMed] [Google Scholar]
  14. Løbner-Olesen A., Boye E. Different effects of mioC transcription on initiation of chromosomal and minichromosomal replication in Escherichia coli. Nucleic Acids Res. 1992 Jun 25;20(12):3029–3036. doi: 10.1093/nar/20.12.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morikawa K., Matsumoto O., Tsujimoto M., Katayanagi K., Ariyoshi M., Doi T., Ikehara M., Inaoka T., Ohtsuka E. X-ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer. Science. 1992 Apr 24;256(5056):523–526. doi: 10.1126/science.1575827. [DOI] [PubMed] [Google Scholar]
  16. Ostrowski J., Barber M. J., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem. 1989 Sep 25;264(27):15796–15808. [PubMed] [Google Scholar]
  17. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Porter T. D., Beck T. W., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein. Biochemistry. 1990 Oct 23;29(42):9814–9818. doi: 10.1021/bi00494a009. [DOI] [PubMed] [Google Scholar]
  19. Rao S. T., Shaffie F., Yu C., Satyshur K. A., Stockman B. J., Markley J. L., Sundarlingam M. Structure of the oxidized long-chain flavodoxin from Anabaena 7120 at 2 A resolution. Protein Sci. 1992 Nov;1(11):1413–1427. doi: 10.1002/pro.5560011103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rost B., Schneider R., Sander C. Progress in protein structure prediction? Trends Biochem Sci. 1993 Apr;18(4):120–123. doi: 10.1016/0968-0004(93)90017-h. [DOI] [PubMed] [Google Scholar]
  21. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  22. Schnell N., Krems B., Entian K. D. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet. 1992 Apr;21(4-5):269–273. doi: 10.1007/BF00351681. [DOI] [PubMed] [Google Scholar]
  23. Sippl M. J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des. 1993 Aug;7(4):473–501. doi: 10.1007/BF02337562. [DOI] [PubMed] [Google Scholar]
  24. Sippl M. J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 Dec;17(4):355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
  25. Sippl M. J., Weitckus S. Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a data base of known protein conformations. Proteins. 1992 Jul;13(3):258–271. doi: 10.1002/prot.340130308. [DOI] [PubMed] [Google Scholar]
  26. Stock A. M., Mottonen J. M., Stock J. B., Schutt C. E. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature. 1989 Feb 23;337(6209):745–749. doi: 10.1038/337745a0. [DOI] [PubMed] [Google Scholar]
  27. Stock J. B., Lukat G. S., Stock A. M. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu Rev Biophys Biophys Chem. 1991;20:109–136. doi: 10.1146/annurev.bb.20.060191.000545. [DOI] [PubMed] [Google Scholar]
  28. Tanaka I., Appelt K., Dijk J., White S. W., Wilson K. S. 3-A resolution structure of a protein with histone-like properties in prokaryotes. Nature. 1984 Aug 2;310(5976):376–381. doi: 10.1038/310376a0. [DOI] [PubMed] [Google Scholar]
  29. Toda T., Shimanuki M., Saka Y., Yamano H., Adachi Y., Shirakawa M., Kyogoku Y., Yanagida M. Fission yeast pap1-dependent transcription is negatively regulated by an essential nuclear protein, crm1. Mol Cell Biol. 1992 Dec;12(12):5474–5484. doi: 10.1128/mcb.12.12.5474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Turi T. G., Webster P., Rose J. K. Brefeldin A sensitivity and resistance in Schizosaccharomyces pombe. Isolation of multiple genes conferring resistance. J Biol Chem. 1994 Sep 30;269(39):24229–24236. [PubMed] [Google Scholar]
  31. Vogel J. P., Lee J. N., Kirsch D. R., Rose M. D., Sztul E. S. Brefeldin A causes a defect in secretion in Saccharomyces cerevisiae. J Biol Chem. 1993 Feb 15;268(5):3040–3043. [PubMed] [Google Scholar]
  32. Volz K., Matsumura P. Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J Biol Chem. 1991 Aug 15;266(23):15511–15519. doi: 10.2210/pdb3chy/pdb. [DOI] [PubMed] [Google Scholar]
  33. Volz K. Structural conservation in the CheY superfamily. Biochemistry. 1993 Nov 9;32(44):11741–11753. doi: 10.1021/bi00095a001. [DOI] [PubMed] [Google Scholar]
  34. Watt W., Tulinsky A., Swenson R. P., Watenpaugh K. D. Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. J Mol Biol. 1991 Mar 5;218(1):195–208. doi: 10.1016/0022-2836(91)90884-9. [DOI] [PubMed] [Google Scholar]
  35. Yang W., Ni L., Somerville R. L. A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5796–5800. doi: 10.1073/pnas.90.12.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van Mierlo C. P., Lijnzaad P., Vervoort J., Müller F., Berendsen H. J., de Vlieg J. Tertiary structure of two-electron reduced Megasphaera elsdenii flavodoxin and some implications, as determined by two-dimensional 1H-NMR and restrained molecular dynamics. Eur J Biochem. 1990 Nov 26;194(1):185–198. doi: 10.1111/j.1432-1033.1990.tb19444.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES