Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Dec;3(12):2311–2321. doi: 10.1002/pro.5560031216

Two domains of interaction with calcium binding proteins can be mapped using fragments of calponin.

F L Wills 1, W D McCubbin 1, M Gimona 1, P Strasser 1, C M Kay 1
PMCID: PMC2142774  PMID: 7756987

Abstract

Native calponin is able to bind 2 mol of calcium binding protein (CaBP) per mole calponin. This study extends this observation to define the 2 domains of interaction, one of which is near the actin binding site, and the other in the amino-terminal region of calponin. Also, the first evidence for a differentiation in the response of calponin to interaction with caltropin versus calmodulin is demonstrated. The binding of caltropin to cleavage and recombinant fragments of calponin was determined by 3 techniques: tryptophan fluorescence of the fragments, CD measurements to determine secondary structure changes, and analytical ultracentrifugation. In order to delineate the sites of interaction, 3 fragments of calponin have been studied. From a cyanogen bromide cleavage of calponin, residues 2-51 were isolated. This fragment is shown to bind to CaBPs and the affinity for caltropin is slightly higher than that for calmodulin. A carboxyl-terminal truncated mutant of calponin comprising residues 1-228 (CP 1-228) has been produced by recombinant techniques. Analytical ultracentrifugation has shown that CP 1-228, like the parent calponin, is able to bind 2 mol of caltropin per mol of 1-228 in a Ca(2+)-dependent fashion, indicating that there is a second site of interaction between residues 52-228. Temperature denaturation of the carboxyl-terminal truncated fragment compared with whole calponin show that the carboxyl-terminal region does not change the temperature at which calponin melts; however, there is greater residual secondary structure with whole calponin versus the fragment. A second mutant produced through recombinant techniques comprises residues 45-228 and is also able to bind caltropin, thus mapping the location of the second site of interaction to near the actin binding site.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Takahashi K., Hiwada K. Effect of calponin on actin-activated myosin ATPase activity. J Biochem. 1990 Nov;108(5):835–838. doi: 10.1093/oxfordjournals.jbchem.a123289. [DOI] [PubMed] [Google Scholar]
  2. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  3. Applegate D., Feng W., Green R. S., Taubman M. B. Cloning and expression of a novel acidic calponin isoform from rat aortic vascular smooth muscle. J Biol Chem. 1994 Apr 8;269(14):10683–10690. [PubMed] [Google Scholar]
  4. Bronskill P. M., Wong J. T. Suppression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan. Biochem J. 1988 Jan 1;249(1):305–308. doi: 10.1042/bj2490305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bárány M., Bárány K. Calponin phosphorylation does not accompany contraction of various smooth muscles. Biochim Biophys Acta. 1993 Nov 7;1179(2):229–233. doi: 10.1016/0167-4889(93)90146-g. [DOI] [PubMed] [Google Scholar]
  6. Gimona M., Sparrow M. P., Strasser P., Herzog M., Small J. V. Calponin and SM 22 isoforms in avian and mammalian smooth muscle. Absence of phosphorylation in vivo. Eur J Biochem. 1992 May 1;205(3):1067–1075. doi: 10.1111/j.1432-1033.1992.tb16875.x. [DOI] [PubMed] [Google Scholar]
  7. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  8. Janin J. Surface and inside volumes in globular proteins. Nature. 1979 Feb 8;277(5696):491–492. doi: 10.1038/277491a0. [DOI] [PubMed] [Google Scholar]
  9. Jasanoff A., Fersht A. R. Quantitative determination of helical propensities from trifluoroethanol titration curves. Biochemistry. 1994 Mar 1;33(8):2129–2135. doi: 10.1021/bi00174a020. [DOI] [PubMed] [Google Scholar]
  10. Klee C. B. Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry. 1977 Mar 8;16(5):1017–1024. doi: 10.1021/bi00624a033. [DOI] [PubMed] [Google Scholar]
  11. Lan J., Albaugh S., Steiner R. F. Interactions of troponin I and its inhibitory fragment (residues 104-115) with troponin C and calmodulin. Biochemistry. 1989 Sep 5;28(18):7380–7385. doi: 10.1021/bi00444a035. [DOI] [PubMed] [Google Scholar]
  12. Makuch R., Birukov K., Shirinsky V., Dabrowska R. Functional interrelationship between calponin and caldesmon. Biochem J. 1991 Nov 15;280(Pt 1):33–38. doi: 10.1042/bj2800033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mani R. S., Kay C. M. Isolation and characterization of a novel molecular weight 11,000 Ca2(+)-binding protein from smooth muscle. Biochemistry. 1990 Feb 13;29(6):1398–1404. doi: 10.1021/bi00458a009. [DOI] [PubMed] [Google Scholar]
  14. Marston S. B., Fraser I. D., Huber P. A., Pritchard K., Gusev N. B., Torok K. Location of two contact sites between human smooth muscle caldesmon and Ca(2+)-calmodulin. J Biol Chem. 1994 Mar 18;269(11):8134–8139. [PubMed] [Google Scholar]
  15. McCubbin W. D., Hincke M. T., Kay C. M. The effect of temperature on some calcium-binding properties of troponin C and calmodulin. Can J Biochem. 1980 Sep;58(9):683–691. doi: 10.1139/o80-096. [DOI] [PubMed] [Google Scholar]
  16. Naka M., Kureishi Y., Muroga Y., Takahashi K., Ito M., Tanaka T. Modulation of smooth muscle calponin by protein kinase C and calmodulin. Biochem Biophys Res Commun. 1990 Sep 28;171(3):933–937. doi: 10.1016/0006-291x(90)90773-g. [DOI] [PubMed] [Google Scholar]
  17. Nishida W., Abe M., Takahashi K., Hiwada K. Do thin filaments of smooth muscle contain calponin? A new method for the preparation. FEBS Lett. 1990 Jul 30;268(1):165–168. doi: 10.1016/0014-5793(90)80999-y. [DOI] [PubMed] [Google Scholar]
  18. Nishida W., Kitami Y., Hiwada K. cDNA cloning and mRNA expression of calponin and SM22 in rat aorta smooth muscle cells. Gene. 1993 Aug 25;130(2):297–302. doi: 10.1016/0378-1119(93)90435-6. [DOI] [PubMed] [Google Scholar]
  19. North A. J., Gimona M., Cross R. A., Small J. V. Calponin is localised in both the contractile apparatus and the cytoskeleton of smooth muscle cells. J Cell Sci. 1994 Mar;107(Pt 3):437–444. doi: 10.1242/jcs.107.3.437. [DOI] [PubMed] [Google Scholar]
  20. Parker J. M., Guo D., Hodges R. S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry. 1986 Sep 23;25(19):5425–5432. doi: 10.1021/bi00367a013. [DOI] [PubMed] [Google Scholar]
  21. Shirinsky V. P., Biryukov K. G., Hettasch J. M., Sellers J. R. Inhibition of the relative movement of actin and myosin by caldesmon and calponin. J Biol Chem. 1992 Aug 5;267(22):15886–15892. [PubMed] [Google Scholar]
  22. Strasser P., Gimona M., Moessler H., Herzog M., Small J. V. Mammalian calponin. Identification and expression of genetic variants. FEBS Lett. 1993 Sep 6;330(1):13–18. doi: 10.1016/0014-5793(93)80909-e. [DOI] [PubMed] [Google Scholar]
  23. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  24. Takahashi K., Hiwada K., Kokubu T. Isolation and characterization of a 34,000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun. 1986 Nov 26;141(1):20–26. doi: 10.1016/s0006-291x(86)80328-x. [DOI] [PubMed] [Google Scholar]
  25. Takahashi K., Hiwada K., Kokubu T. Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension. 1988 Jun;11(6 Pt 2):620–626. doi: 10.1161/01.hyp.11.6.620. [DOI] [PubMed] [Google Scholar]
  26. Takahashi K., Nadal-Ginard B. Molecular cloning and sequence analysis of smooth muscle calponin. J Biol Chem. 1991 Jul 15;266(20):13284–13288. [PubMed] [Google Scholar]
  27. Takeuchi K., Takahashi K., Abe M., Nishida W., Hiwada K., Nabeya T., Maruyama K. Co-localization of immunoreactive forms of calponin with actin cytoskeleton in platelets, fibroblasts, and vascular smooth muscle. J Biochem. 1991 Feb;109(2):311–316. [PubMed] [Google Scholar]
  28. Van Eyk J. E., Hodges R. S. A synthetic peptide of the N-terminus of actin interacts with myosin. Biochemistry. 1991 Dec 17;30(50):11676–11682. doi: 10.1021/bi00114a010. [DOI] [PubMed] [Google Scholar]
  29. Vancompernolle K., Gimona M., Herzog M., Van Damme J., Vandekerckhove J., Small V. Isolation and sequence of a tropomyosin-binding fragment of turkey gizzard calponin. FEBS Lett. 1990 Nov 12;274(1-2):146–150. doi: 10.1016/0014-5793(90)81350-w. [DOI] [PubMed] [Google Scholar]
  30. Wills F. L., McCubbin W. D., Kay C. M. Characterization of the smooth muscle calponin and calmodulin complex. Biochemistry. 1993 Mar 9;32(9):2321–2328. doi: 10.1021/bi00060a025. [DOI] [PubMed] [Google Scholar]
  31. Winder S. J., Walsh M. P. Structural and functional characterization of calponin fragments. Biochem Int. 1990 Oct;22(2):335–341. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES