Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Dec;3(12):2245–2253. doi: 10.1002/pro.5560031210

Crystal structure of p-hydroxybenzoate hydroxylase reconstituted with the modified FAD present in alcohol oxidase from methylotrophic yeasts: evidence for an arabinoflavin.

W J van Berkel 1, M H Eppink 1, H A Schreuder 1
PMCID: PMC2142777  PMID: 7756982

Abstract

The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.

Full Text

The Full Text of this article is available as a PDF (897.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benen J., van Berkel W., Zak Z., Visser T., Veeger C., de Kok A. Lipoamide dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Spectral properties of wild type and mutated enzymes. Eur J Biochem. 1991 Dec 18;202(3):863–872. doi: 10.1111/j.1432-1033.1991.tb16444.x. [DOI] [PubMed] [Google Scholar]
  2. Bystrykh L. V., Dijkhuizen L., Harder W. Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha. J Gen Microbiol. 1991 Oct;137(10):2381–2386. doi: 10.1099/00221287-137-10-2381. [DOI] [PubMed] [Google Scholar]
  3. Cavener D. R. GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol. 1992 Feb 5;223(3):811–814. doi: 10.1016/0022-2836(92)90992-s. [DOI] [PubMed] [Google Scholar]
  4. Claiborne A., Massey V. Mechanistic studies of p-hydroxybenzoate hydroxylase reconstituted with 2-Thio-FAD. J Biol Chem. 1983 Apr 25;258(8):4919–4925. [PubMed] [Google Scholar]
  5. Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem. 1976 May 10;251(9):2550–2563. [PubMed] [Google Scholar]
  6. Entsch B., Husain M., Ballou D. P., Massey V., Walsh C. Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD. J Biol Chem. 1980 Feb 25;255(4):1420–1429. [PubMed] [Google Scholar]
  7. Entsch B., Massey V., Claiborne A. para-Hydroxybenzoate hydroxylase containing 6-hydroxy-FAD is an effective enzyme with modified reaction mechanisms. J Biol Chem. 1987 May 5;262(13):6060–6068. [PubMed] [Google Scholar]
  8. Entsch B., Palfey B. A., Ballou D. P., Massey V. Catalytic function of tyrosine residues in para-hydroxybenzoate hydroxylase as determined by the study of site-directed mutants. J Biol Chem. 1991 Sep 15;266(26):17341–17349. [PubMed] [Google Scholar]
  9. Eschrich K., van der Bolt F. J., de Kok A., van Berkel W. J. Role of Tyr201 and Tyr385 in substrate activation by p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1993 Aug 15;216(1):137–146. doi: 10.1111/j.1432-1033.1993.tb18125.x. [DOI] [PubMed] [Google Scholar]
  10. Gatti D. L., Palfey B. A., Lah M. S., Entsch B., Massey V., Ballou D. P., Ludwig M. L. The mobile flavin of 4-OH benzoate hydroxylase. Science. 1994 Oct 7;266(5182):110–114. doi: 10.1126/science.7939628. [DOI] [PubMed] [Google Scholar]
  11. Hecht H. J., Kalisz H. M., Hendle J., Schmid R. D., Schomburg D. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J Mol Biol. 1993 Jan 5;229(1):153–172. doi: 10.1006/jmbi.1993.1015. [DOI] [PubMed] [Google Scholar]
  12. Howell L. G., Spector T., Massey V. Purification and properties of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. J Biol Chem. 1972 Jul 10;247(13):4340–4350. [PubMed] [Google Scholar]
  13. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  14. Lah M. S., Palfey B. A., Schreuder H. A., Ludwig M. L. Crystal structures of mutant Pseudomonas aeruginosa p-hydroxybenzoate hydroxylases: the Tyr201Phe, Tyr385Phe, and Asn300Asp variants. Biochemistry. 1994 Feb 15;33(6):1555–1564. doi: 10.1021/bi00172a036. [DOI] [PubMed] [Google Scholar]
  15. Ledeboer A. M., Edens L., Maat J., Visser C., Bos J. W., Verrips C. T., Janowicz Z., Eckart M., Roggenkamp R., Hollenberg C. P. Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res. 1985 May 10;13(9):3063–3082. doi: 10.1093/nar/13.9.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li J., Vrielink A., Brick P., Blow D. M. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry. 1993 Nov 2;32(43):11507–11515. [PubMed] [Google Scholar]
  17. Müller F., van Berkel W. J. A study on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. A convenient method of preparation and some properties of the apoenzyme. Eur J Biochem. 1982 Nov;128(1):21–27. [PubMed] [Google Scholar]
  18. Nakamura S., Ogura Y., Yano K., Higashi N., Arima K. Kinetic studies on the reaction mechanism of p-hydroxybenzoate hydroxylase. Biochemistry. 1970 Aug 4;9(16):3235–3242. doi: 10.1021/bi00818a017. [DOI] [PubMed] [Google Scholar]
  19. Schreuder H. A., Prick P. A., Wierenga R. K., Vriend G., Wilson K. S., Hol W. G., Drenth J. Crystal structure of the p-hydroxybenzoate hydroxylase-substrate complex refined at 1.9 A resolution. Analysis of the enzyme-substrate and enzyme-product complexes. J Mol Biol. 1989 Aug 20;208(4):679–696. doi: 10.1016/0022-2836(89)90158-7. [DOI] [PubMed] [Google Scholar]
  20. Sherry B., Abeles R. H. Mechanism of action of methanol oxidase, reconstitution of methanol oxidase with 5-deazaflavin, and inactivation of methanol oxidase by cyclopropanol. Biochemistry. 1985 May 21;24(11):2594–2605. doi: 10.1021/bi00332a002. [DOI] [PubMed] [Google Scholar]
  21. Shoun H., Beppu T., Arima K. On the stable enzyme-substrate complex of p-hydroxybenzoate hydroxylase. Evidences for the proton uptake from the substrate. J Biol Chem. 1979 Feb 10;254(3):899–904. [PubMed] [Google Scholar]
  22. Van Berkel W. J., Müller F. The temperature and pH dependence of some properties of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1989 Feb 1;179(2):307–314. doi: 10.1111/j.1432-1033.1989.tb14556.x. [DOI] [PubMed] [Google Scholar]
  23. Vervoort J., Rietjens I. M., van Berkel W. J., Veeger C. Frontier orbital study on the 4-hydroxybenzoate-3-hydroxylase-dependent activity with benzoate derivatives. Eur J Biochem. 1992 Jun 1;206(2):479–484. doi: 10.1111/j.1432-1033.1992.tb16950.x. [DOI] [PubMed] [Google Scholar]
  24. Vrielink A., Lloyd L. F., Blow D. M. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. J Mol Biol. 1991 Jun 5;219(3):533–554. doi: 10.1016/0022-2836(91)90192-9. [DOI] [PubMed] [Google Scholar]
  25. de Jong E., van Berkel W. J., van der Zwan R. P., de Bont J. A. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur J Biochem. 1992 Sep 15;208(3):651–657. doi: 10.1111/j.1432-1033.1992.tb17231.x. [DOI] [PubMed] [Google Scholar]
  26. van Berkel W., Westphal A., Eschrich K., Eppink M., de Kok A. Substitution of Arg214 at the substrate-binding site of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1992 Dec 1;210(2):411–419. doi: 10.1111/j.1432-1033.1992.tb17436.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES