Abstract
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.
Full Text
The Full Text of this article is available as a PDF (897.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benen J., van Berkel W., Zak Z., Visser T., Veeger C., de Kok A. Lipoamide dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Spectral properties of wild type and mutated enzymes. Eur J Biochem. 1991 Dec 18;202(3):863–872. doi: 10.1111/j.1432-1033.1991.tb16444.x. [DOI] [PubMed] [Google Scholar]
- Bystrykh L. V., Dijkhuizen L., Harder W. Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha. J Gen Microbiol. 1991 Oct;137(10):2381–2386. doi: 10.1099/00221287-137-10-2381. [DOI] [PubMed] [Google Scholar]
- Cavener D. R. GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol. 1992 Feb 5;223(3):811–814. doi: 10.1016/0022-2836(92)90992-s. [DOI] [PubMed] [Google Scholar]
- Claiborne A., Massey V. Mechanistic studies of p-hydroxybenzoate hydroxylase reconstituted with 2-Thio-FAD. J Biol Chem. 1983 Apr 25;258(8):4919–4925. [PubMed] [Google Scholar]
- Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem. 1976 May 10;251(9):2550–2563. [PubMed] [Google Scholar]
- Entsch B., Husain M., Ballou D. P., Massey V., Walsh C. Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD. J Biol Chem. 1980 Feb 25;255(4):1420–1429. [PubMed] [Google Scholar]
- Entsch B., Massey V., Claiborne A. para-Hydroxybenzoate hydroxylase containing 6-hydroxy-FAD is an effective enzyme with modified reaction mechanisms. J Biol Chem. 1987 May 5;262(13):6060–6068. [PubMed] [Google Scholar]
- Entsch B., Palfey B. A., Ballou D. P., Massey V. Catalytic function of tyrosine residues in para-hydroxybenzoate hydroxylase as determined by the study of site-directed mutants. J Biol Chem. 1991 Sep 15;266(26):17341–17349. [PubMed] [Google Scholar]
- Eschrich K., van der Bolt F. J., de Kok A., van Berkel W. J. Role of Tyr201 and Tyr385 in substrate activation by p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1993 Aug 15;216(1):137–146. doi: 10.1111/j.1432-1033.1993.tb18125.x. [DOI] [PubMed] [Google Scholar]
- Gatti D. L., Palfey B. A., Lah M. S., Entsch B., Massey V., Ballou D. P., Ludwig M. L. The mobile flavin of 4-OH benzoate hydroxylase. Science. 1994 Oct 7;266(5182):110–114. doi: 10.1126/science.7939628. [DOI] [PubMed] [Google Scholar]
- Hecht H. J., Kalisz H. M., Hendle J., Schmid R. D., Schomburg D. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J Mol Biol. 1993 Jan 5;229(1):153–172. doi: 10.1006/jmbi.1993.1015. [DOI] [PubMed] [Google Scholar]
- Howell L. G., Spector T., Massey V. Purification and properties of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. J Biol Chem. 1972 Jul 10;247(13):4340–4350. [PubMed] [Google Scholar]
- Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
- Lah M. S., Palfey B. A., Schreuder H. A., Ludwig M. L. Crystal structures of mutant Pseudomonas aeruginosa p-hydroxybenzoate hydroxylases: the Tyr201Phe, Tyr385Phe, and Asn300Asp variants. Biochemistry. 1994 Feb 15;33(6):1555–1564. doi: 10.1021/bi00172a036. [DOI] [PubMed] [Google Scholar]
- Ledeboer A. M., Edens L., Maat J., Visser C., Bos J. W., Verrips C. T., Janowicz Z., Eckart M., Roggenkamp R., Hollenberg C. P. Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res. 1985 May 10;13(9):3063–3082. doi: 10.1093/nar/13.9.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J., Vrielink A., Brick P., Blow D. M. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry. 1993 Nov 2;32(43):11507–11515. [PubMed] [Google Scholar]
- Müller F., van Berkel W. J. A study on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. A convenient method of preparation and some properties of the apoenzyme. Eur J Biochem. 1982 Nov;128(1):21–27. [PubMed] [Google Scholar]
- Nakamura S., Ogura Y., Yano K., Higashi N., Arima K. Kinetic studies on the reaction mechanism of p-hydroxybenzoate hydroxylase. Biochemistry. 1970 Aug 4;9(16):3235–3242. doi: 10.1021/bi00818a017. [DOI] [PubMed] [Google Scholar]
- Schreuder H. A., Prick P. A., Wierenga R. K., Vriend G., Wilson K. S., Hol W. G., Drenth J. Crystal structure of the p-hydroxybenzoate hydroxylase-substrate complex refined at 1.9 A resolution. Analysis of the enzyme-substrate and enzyme-product complexes. J Mol Biol. 1989 Aug 20;208(4):679–696. doi: 10.1016/0022-2836(89)90158-7. [DOI] [PubMed] [Google Scholar]
- Sherry B., Abeles R. H. Mechanism of action of methanol oxidase, reconstitution of methanol oxidase with 5-deazaflavin, and inactivation of methanol oxidase by cyclopropanol. Biochemistry. 1985 May 21;24(11):2594–2605. doi: 10.1021/bi00332a002. [DOI] [PubMed] [Google Scholar]
- Shoun H., Beppu T., Arima K. On the stable enzyme-substrate complex of p-hydroxybenzoate hydroxylase. Evidences for the proton uptake from the substrate. J Biol Chem. 1979 Feb 10;254(3):899–904. [PubMed] [Google Scholar]
- Van Berkel W. J., Müller F. The temperature and pH dependence of some properties of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1989 Feb 1;179(2):307–314. doi: 10.1111/j.1432-1033.1989.tb14556.x. [DOI] [PubMed] [Google Scholar]
- Vervoort J., Rietjens I. M., van Berkel W. J., Veeger C. Frontier orbital study on the 4-hydroxybenzoate-3-hydroxylase-dependent activity with benzoate derivatives. Eur J Biochem. 1992 Jun 1;206(2):479–484. doi: 10.1111/j.1432-1033.1992.tb16950.x. [DOI] [PubMed] [Google Scholar]
- Vrielink A., Lloyd L. F., Blow D. M. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. J Mol Biol. 1991 Jun 5;219(3):533–554. doi: 10.1016/0022-2836(91)90192-9. [DOI] [PubMed] [Google Scholar]
- de Jong E., van Berkel W. J., van der Zwan R. P., de Bont J. A. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur J Biochem. 1992 Sep 15;208(3):651–657. doi: 10.1111/j.1432-1033.1992.tb17231.x. [DOI] [PubMed] [Google Scholar]
- van Berkel W., Westphal A., Eschrich K., Eppink M., de Kok A. Substitution of Arg214 at the substrate-binding site of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1992 Dec 1;210(2):411–419. doi: 10.1111/j.1432-1033.1992.tb17436.x. [DOI] [PubMed] [Google Scholar]