Abstract
Derivatives of ribonuclease A (RNase A) with modifications in positions 1 and/or 7 were prepared by subtilisin-catalyzed semisynthesis starting from synthetic RNase 1-20 peptides and S-protein (RNase 21-124). The lysyl residue at position 1 was replaced by alanine, whereas Lys-7 was replaced by cysteine that was specifically modified prior to semisynthesis. The enzymes obtained were characterized by protein chemical methods and were active toward uridylyl-3',5'-adenosine and yeast RNA. When Lys-7 was replaced by S-methyl-cysteine or S-carboxamido-contrast, the catalytic properties were only slightly altered. The dissociation constant for the RNase A-RI complex increased from 74 fM (RNase A) to 4.5 pM (Lys-1, Cys-7-methyl RNase), corresponding to a decrease in binding energy of 10 kJ mol-1. Modifications that introduced a positive charge in position 7 (S-aminoethyl- or S-ethylpyridyl-cysteine) led to much smaller losses. The replacement of Lys-1 resulted in a 4-kJ mol-1 loss in binding energy. S-protein bound to RI with Ki = 63.4 pM, 800-fold weaker than RNase A. This corresponded to a 16-kJ mol-1 difference in binding energy. The results show that the N-terminal portion of RNase A contributes significantly to binding of ribonuclease inhibitor and that ionic interactions of Lys-7 and to a smaller extent of Lys-1 provide most of the binding energy.
Full Text
The Full Text of this article is available as a PDF (974.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Betz A., Hofsteenge J., Stone S. R. Ionic interactions in the formation of the thrombin-hirudin complex. Biochem J. 1991 May 1;275(Pt 3):801–803. doi: 10.1042/bj2750801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackburn P., Gavilanes J. G. Identification of lysine residues in the binding domain of ribonuclease A for the RNase inhibitor from human placenta. J Biol Chem. 1982 Jan 10;257(1):316–321. [PubMed] [Google Scholar]
- Blackburn P., Jailkhani B. L. Ribonuclease inhibitor from human placenta: interaction with derivatives of ribonuclease A. J Biol Chem. 1979 Dec 25;254(24):12488–12493. [PubMed] [Google Scholar]
- Bond M. D., Vallee B. L. Replacement of residues 8-22 of angiogenin with 7-21 of RNase A selectively affects protein synthesis inhibition and angiogenesis. Biochemistry. 1990 Apr 3;29(13):3341–3349. doi: 10.1021/bi00465a028. [DOI] [PubMed] [Google Scholar]
- Chaiken I. M. Semisynthetic peptides and proteins. CRC Crit Rev Biochem. 1981;11(3):255–301. doi: 10.3109/10409238109108703. [DOI] [PubMed] [Google Scholar]
- Doscher M. S., Hirs C. H. The heterogeneity of bovine pancreatic ribonuclease S. Biochemistry. 1967 Jan;6(1):304–312. doi: 10.1021/bi00853a047. [DOI] [PubMed] [Google Scholar]
- Ellman J. A., Mendel D., Schultz P. G. Site-specific incorporation of novel backbone structures into proteins. Science. 1992 Jan 10;255(5041):197–200. doi: 10.1126/science.1553546. [DOI] [PubMed] [Google Scholar]
- Fersht A., Winter G. Protein engineering. Trends Biochem Sci. 1992 Aug;17(8):292–295. doi: 10.1016/0968-0004(92)90438-f. [DOI] [PubMed] [Google Scholar]
- Fominaya J. M., Hofsteenge J. Inactivation of ribonuclease inhibitor by thiol-disulfide exchange. J Biol Chem. 1992 Dec 5;267(34):24655–24660. [PubMed] [Google Scholar]
- Heinrikson R. L. The selective S-methylation of sulfhydryl groups in proteins and peptides with methyl-p-nitrobenzenesulfonate. J Biol Chem. 1971 Jun 25;246(12):4090–4096. [PubMed] [Google Scholar]
- Hofsteenge J., Kieffer B., Matthies R., Hemmings B. A., Stone S. R. Amino acid sequence of the ribonuclease inhibitor from porcine liver reveals the presence of leucine-rich repeats. Biochemistry. 1988 Nov 15;27(23):8537–8544. doi: 10.1021/bi00423a006. [DOI] [PubMed] [Google Scholar]
- Hofsteenge J., Servis C., Stone S. R. Studies on the interaction of ribonuclease inhibitor with pancreatic ribonuclease involving differential labeling of cysteinyl residues. J Biol Chem. 1991 Dec 15;266(35):24198–24204. [PubMed] [Google Scholar]
- Hofsteenge J., Vincentini A., Stone S. R. Purification and characterization of truncated ribonuclease inhibitor. Biochem J. 1991 Apr 15;275(Pt 2):541–543. doi: 10.1042/bj2750541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homandberg G. A., Laskowski M., Jr Enzymatic resynthesis of the hydrolyzed peptide bond(s) in ribonuclease S. Biochemistry. 1979 Feb 20;18(4):586–592. doi: 10.1021/bi00571a006. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Mattis J. A., Laskowski M., Jr Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibria toward synthesis. Biochemistry. 1978 Nov 28;17(24):5220–5227. doi: 10.1021/bi00617a023. [DOI] [PubMed] [Google Scholar]
- Irie M., Ohgi K., Yoshinaga M., Yanagida T., Okada Y., Teno N. Roles of lysine1 and lysine7 residues of bovine pancreatic ribonuclease in the enzymatic activity. J Biochem. 1986 Oct;100(4):1057–1063. doi: 10.1093/oxfordjournals.jbchem.a121785. [DOI] [PubMed] [Google Scholar]
- Irie M., Watanabe H., Ohgi K., Tobe M., Matsumura G., Arata Y., Hirose T., Inayama S. Some evidence suggesting the existence of P2 and B3 sites in the active site of bovine pancreatic ribonuclease A. J Biochem. 1984 Mar;95(3):751–759. doi: 10.1093/oxfordjournals.jbchem.a134666. [DOI] [PubMed] [Google Scholar]
- Knecht R., Chang J. Y. Liquid chromatographic determination of amino acids after gas-phase hydrolysis and derivatization with (dimethylamino)azobenzenesulfonyl chloride. Anal Chem. 1986 Oct;58(12):2375–2379. doi: 10.1021/ac00125a006. [DOI] [PubMed] [Google Scholar]
- Lee F. S., Shapiro R., Vallee B. L. Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemistry. 1989 Jan 10;28(1):225–230. doi: 10.1021/bi00427a031. [DOI] [PubMed] [Google Scholar]
- Lee F. S., Vallee B. L. Kinetic characterization of two active mutants of placental ribonuclease inhibitor that lack internal repeats. Biochemistry. 1990 Jul 17;29(28):6633–6638. doi: 10.1021/bi00480a012. [DOI] [PubMed] [Google Scholar]
- Lee F. S., Vallee B. L. Structure and action of mammalian ribonuclease (angiogenin) inhibitor. Prog Nucleic Acid Res Mol Biol. 1993;44:1–30. doi: 10.1016/s0079-6603(08)60215-9. [DOI] [PubMed] [Google Scholar]
- McPherson A., Brayer G. D., Morrison R. D. Crystal structure of RNase A complexed with d(pA)4. J Mol Biol. 1986 May 20;189(2):305–327. doi: 10.1016/0022-2836(86)90512-7. [DOI] [PubMed] [Google Scholar]
- Parés X., Nogués M. V., de Llorens R., Cuchillo C. M. Structure and function of ribonuclease A binding subsites. Essays Biochem. 1991;26:89–103. [PubMed] [Google Scholar]
- RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
- Rydel T. J., Tulinsky A., Bode W., Huber R. Refined structure of the hirudin-thrombin complex. J Mol Biol. 1991 Sep 20;221(2):583–601. doi: 10.1016/0022-2836(91)80074-5. [DOI] [PubMed] [Google Scholar]
- Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J., Rico M. High-resolution three-dimensional structure of ribonuclease A in solution by nuclear magnetic resonance spectroscopy. J Mol Biol. 1993 Feb 5;229(3):722–734. doi: 10.1006/jmbi.1993.1075. [DOI] [PubMed] [Google Scholar]
- Schwartz W. E., Smith P. K., Royer G. P. N-(beta-Iodoethyl)trifluoroacetamide: a new reagent for the aminoethylation of thio groups in proteins. Anal Biochem. 1980 Jul 15;106(1):43–48. doi: 10.1016/0003-2697(80)90116-5. [DOI] [PubMed] [Google Scholar]
- Shapiro R., Vallee B. L. Identification of functional arginines in human angiogenin by site-directed mutagenesis. Biochemistry. 1992 Dec 15;31(49):12477–12485. doi: 10.1021/bi00164a026. [DOI] [PubMed] [Google Scholar]
- Shapiro R., Vallee B. L. Interaction of human placental ribonuclease with placental ribonuclease inhibitor. Biochemistry. 1991 Feb 26;30(8):2246–2255. doi: 10.1021/bi00222a030. [DOI] [PubMed] [Google Scholar]
- Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
- Vicentini A. M., Kieffer B., Matthies R., Meyhack B., Hemmings B. A., Stone S. R., Hofsteenge J. Protein chemical and kinetic characterization of recombinant porcine ribonuclease inhibitor expressed in Saccharomyces cerevisiae. Biochemistry. 1990 Sep 18;29(37):8827–8834. doi: 10.1021/bi00489a046. [DOI] [PubMed] [Google Scholar]
- Wells J. A., Powers D. B., Bott R. R., Graycar T. P., Estell D. A. Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1219–1223. doi: 10.1073/pnas.84.5.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wlodawer A., Bott R., Sjölin L. The refined crystal structure of ribonuclease A at 2.0 A resolution. J Biol Chem. 1982 Feb 10;257(3):1325–1332. [PubMed] [Google Scholar]
- de Llorens R., Arús C., Parés X., Cuchillo C. M. Chemical and computer graphics studies on the topography of the ribonuclease A active site cleft. A model of the enzyme-pentanucleotide substrate complex. Protein Eng. 1989 Mar;2(6):417–429. doi: 10.1093/protein/2.6.417. [DOI] [PubMed] [Google Scholar]