Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Feb;3(2):282–290. doi: 10.1002/pro.5560030212

Enzyme IIBcellobiose of the phosphoenol-pyruvate-dependent phosphotransferase system of Escherichia coli: backbone assignment and secondary structure determined by three-dimensional NMR spectroscopy.

E Ab 1, G K Schuurman-Wolters 1, M H Saier 1, J Reizer 1, M Jacuinod 1, P Roepstorff 1, K Dijkstra 1, R M Scheek 1, G T Robillard 1
PMCID: PMC2142798  PMID: 8003964

Abstract

The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand.

Full Text

The Full Text of this article is available as a PDF (818.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bax A., Ikura M. An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR. 1991 May;1(1):99–104. doi: 10.1007/BF01874573. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Fesik S. W., Zuiderweg E. R. Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules. Q Rev Biophys. 1990 May;23(2):97–131. doi: 10.1017/s0033583500005515. [DOI] [PubMed] [Google Scholar]
  4. Guan K. L., Dixon J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 1991 Sep 15;266(26):17026–17030. [PubMed] [Google Scholar]
  5. Kroon G. J., Grötzinger J., Dijkstra K., Scheek R. M., Robillard G. T. Backbone assignments and secondary structure of the Escherichia coli enzyme-II mannitol A domain determined by heteronuclear three-dimensional NMR spectroscopy. Protein Sci. 1993 Aug;2(8):1331–1341. doi: 10.1002/pro.5560020816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  8. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  9. Nakamaye K. L., Eckstein F. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1986 Dec 22;14(24):9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Parker L. L., Hall B. G. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics. 1990 Mar;124(3):455–471. doi: 10.1093/genetics/124.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pas H. H., Meyer G. H., Kruizinga W. H., Tamminga K. S., van Weeghel R. P., Robillard G. T. 31phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. J Biol Chem. 1991 Apr 15;266(11):6690–6692. [PubMed] [Google Scholar]
  12. Pas H. H., Robillard G. T. S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl. Biochemistry. 1988 Aug 9;27(16):5835–5839. doi: 10.1021/bi00416a002. [DOI] [PubMed] [Google Scholar]
  13. Pas H. H., ten Hoeve-Duurkens R. H., Robillard G. T. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer. Biochemistry. 1988 Jul 26;27(15):5520–5525. doi: 10.1021/bi00415a020. [DOI] [PubMed] [Google Scholar]
  14. Postma P. W., Lengeler J. W., Jacobson G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. doi: 10.1128/mr.57.3.543-594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reizer J., Reizer A., Saier M. H., Jr The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res Microbiol. 1990 Nov-Dec;141(9):1061–1067. doi: 10.1016/0923-2508(90)90079-6. [DOI] [PubMed] [Google Scholar]
  16. Robillard G. T., Boer H., van Weeghel R. P., Wolters G., Dijkstra A. Expression and characterization of a structural and functional domain of the mannitol-specific transport protein involved in the coupling of mannitol transport and phosphorylation in the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Biochemistry. 1993 Sep 21;32(37):9553–9562. doi: 10.1021/bi00088a006. [DOI] [PubMed] [Google Scholar]
  17. Saier M. H., Jr, Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol. 1992 Mar;174(5):1433–1438. doi: 10.1128/jb.174.5.1433-1438.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  19. Zuiderweg E. R., Fesik S. W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry. 1989 Mar 21;28(6):2387–2391. doi: 10.1021/bi00432a008. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES