Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Feb;3(2):291–302. doi: 10.1002/pro.5560030213

An 1H NMR determination of the three-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor from Ecballium elaterium (EETI-II).

K J Nielsen 1, D Alewood 1, J Andrews 1, S B Kent 1, D J Craik 1
PMCID: PMC2142802  PMID: 8003965

Abstract

The 3-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor Ecballium elaterium (EETI-II) have been determined by 1H NMR spectroscopy and simulated annealing calculations incorporating NOE-derived distance constraints. Spectra were assigned using 2-dimensional NMR methods at 400 MHz, and internuclear distances were determined from NOESY experiments. Three-bond spin-spin couplings between C alpha H and amide protons, amide exchange rates, and the temperature dependence of amide chemical shifts were also measured. The structure consists largely of loops and turns, with a short region of beta-sheet. The Leu-5 substitution produces a substantial reduction in affinity for trypsin relative to native EETI-II, which contains an Ile at this position. The global structure of the Leu-5 analogue studied here is similar to that reported for native EETI-II (Heitz A, Chiche L, Le-Nguyen D, Castro B, 1989, Biochemistry 28:2392-2398) and to X-ray and NMR structures of the related proteinase inhibitor CMTI-I (Bode W et al., 1989, FEBS Lett 242:285-292; Holak TA et al., 1989a, J Mol Biol 210:649-654; Holak TA, Gondol D, Otlewski J, Wilusz T, 1989b, J Mol Biol 210:635-648; Holak TA, Habazettl J, Oschkinat H, Otlewski J, 1991, J Am Chem Soc 113:3196-3198). The region near the scissile bond is the most disordered part of the structure, based on geometric superimposition of 40 calculated structures. This disorder most likely reflects additional motion being present in this region relative to the rest of the protein. This motional disorder is increased in the Leu-5 analogue relative to the native form and may be responsible for its reduced trypsin binding. A second form of the protein synthesized with all (D) amino acids was also studied by NMR and found to have a spectrum identical with that of the (L) form. This is consistent with the (D) form being a mirror image of the (L) form and not distinguishable by NMR in an achiral solvent (i.e., H2O). The (D) form has no activity against trypsin, as would be expected for a mirror-image form.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adzhubei A. A., Eisenmenger F., Tumanyan V. G., Zinke M., Brodzinski S., Esipova N. G. Approaching a complete classification of protein secondary structure. J Biomol Struct Dyn. 1987 Dec;5(3):689–704. doi: 10.1080/07391102.1987.10506420. [DOI] [PubMed] [Google Scholar]
  2. Andersen N. H., Chen C. P., Marschner T. M., Krystek S. R., Jr, Bassolino D. A. Conformational isomerism of endothelin in acidic aqueous media: a quantitative NOESY analysis. Biochemistry. 1992 Feb 11;31(5):1280–1295. doi: 10.1021/bi00120a003. [DOI] [PubMed] [Google Scholar]
  3. Bach A. C., 2nd, Selsted M. E., Pardi A. Two-dimensional NMR studies of the antimicrobial peptide NP-5. Biochemistry. 1987 Jul 14;26(14):4389–4397. doi: 10.1021/bi00388a030. [DOI] [PubMed] [Google Scholar]
  4. Bode W., Greyling H. J., Huber R., Otlewski J., Wilusz T. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes. FEBS Lett. 1989 Jan 2;242(2):285–292. doi: 10.1016/0014-5793(89)80486-7. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Clore G. M., Gronenborn A. M., Karplus M. Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3801–3805. doi: 10.1073/pnas.83.11.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chiche L., Gaboriaud C., Heitz A., Mornon J. P., Castro B., Kollman P. A. Use of restrained molecular dynamics in water to determine three-dimensional protein structure: prediction of the three-dimensional structure of Ecballium elaterium trypsin inhibitor II. Proteins. 1989;6(4):405–417. doi: 10.1002/prot.340060407. [DOI] [PubMed] [Google Scholar]
  7. Clore G. M., Nilges M., Sukumaran D. K., Brünger A. T., Karplus M., Gronenborn A. M. The three-dimensional structure of alpha1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 1986 Oct;5(10):2729–2735. doi: 10.1002/j.1460-2075.1986.tb04557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Favel A., Le-Nguyen D., Coletti-Previero M. A., Castro B. Active site chemical mutagenesis of Ecballium elaterium trypsin inhibitor II: new microproteins inhibiting elastase and chymotrypsin. Biochem Biophys Res Commun. 1989 Jul 14;162(1):79–82. doi: 10.1016/0006-291x(89)91964-5. [DOI] [PubMed] [Google Scholar]
  9. Favel A., Mattras H., Coletti-Previero M. A., Zwilling R., Robinson E. A., Castro B. Protease inhibitors from Ecballium elaterium seeds. Int J Pept Protein Res. 1989 Mar;33(3):202–208. doi: 10.1111/j.1399-3011.1989.tb00210.x. [DOI] [PubMed] [Google Scholar]
  10. Gaboriaud C., Vaney M. C., Bachet B., Le-Nguyen D., Castro B., Mornon J. P. Crystallization and preliminary X-ray study of porcine trypsin, free and complexed with Ecballium elaterium trypsin inhibitor, a member of the squash inhibitors family. J Mol Biol. 1989 Dec 20;210(4):883–884. doi: 10.1016/0022-2836(89)90118-6. [DOI] [PubMed] [Google Scholar]
  11. Holak T. A., Gondol D., Otlewski J., Wilusz T. Determination of the complete three-dimensional structure of the trypsin inhibitor from squash seeds in aqueous solution by nuclear magnetic resonance and a combination of distance geometry and dynamical simulated annealing. J Mol Biol. 1989 Dec 5;210(3):635–648. doi: 10.1016/0022-2836(89)90137-x. [DOI] [PubMed] [Google Scholar]
  12. Le Nguyen D., Heitz A., Chiche L., Castro B., Boigegrain R. A., Favel A., Coletti-Previero M. A. Molecular recognition between serine proteases and new bioactive microproteins with a knotted structure. Biochimie. 1990 Jun-Jul;72(6-7):431–435. doi: 10.1016/0300-9084(90)90067-q. [DOI] [PubMed] [Google Scholar]
  13. Le-Nguyen D., Heitz A., Chiche L., el Hajji M., Castro B. Characterization and 2D NMR study of the stable [9-21, 15-27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II. Protein Sci. 1993 Feb;2(2):165–174. doi: 10.1002/pro.5560020205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Le-Nguyen D., Nalis D., Castro B. Solid phase synthesis of a trypsin inhibitor isolated from the Cucurbitaceae Ecballium elaterium. Int J Pept Protein Res. 1989 Dec;34(6):492–497. doi: 10.1111/j.1399-3011.1989.tb01399.x. [DOI] [PubMed] [Google Scholar]
  15. Levitt M. Molecular dynamics of native protein. II. Analysis and nature of motion. J Mol Biol. 1983 Aug 15;168(3):621–657. doi: 10.1016/s0022-2836(83)80306-4. [DOI] [PubMed] [Google Scholar]
  16. Likos J. J. 1H-n.m.r. studies of squash seed trypsin inhibitor. Int J Pept Protein Res. 1989 Nov;34(5):381–386. doi: 10.1111/j.1399-3011.1989.tb00706.x. [DOI] [PubMed] [Google Scholar]
  17. Milton R. C., Milton S. C., Kent S. B. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected]. Science. 1992 Jun 5;256(5062):1445–1448. doi: 10.1126/science.1604320. [DOI] [PubMed] [Google Scholar]
  18. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. FEBS Lett. 1988 Oct 24;239(1):129–136. doi: 10.1016/0014-5793(88)80559-3. [DOI] [PubMed] [Google Scholar]
  19. Nilges M., Habazettl J., Brünger A. T., Holak T. A. Relaxation matrix refinement of the solution structure of squash trypsin inhibitor. J Mol Biol. 1991 Jun 5;219(3):499–510. doi: 10.1016/0022-2836(91)90189-d. [DOI] [PubMed] [Google Scholar]
  20. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  21. Reed J., Hull W. E., von der Lieth C. W., Kübler D., Suhai S., Kinzel V. Secondary structure of the Arg-Gly-Asp recognition site in proteins involved in cell-surface adhesion. Evidence for the occurrence of nested beta-bends in the model hexapeptide GRGDSP. Eur J Biochem. 1988 Dec 1;178(1):141–154. doi: 10.1111/j.1432-1033.1988.tb14439.x. [DOI] [PubMed] [Google Scholar]
  22. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  23. Smith J. A., Pease L. G. Reverse turns in peptides and proteins. CRC Crit Rev Biochem. 1980;8(4):315–399. doi: 10.3109/10409238009105470. [DOI] [PubMed] [Google Scholar]
  24. Srinivasan N., Sowdhamini R., Ramakrishnan C., Balaram P. Conformations of disulfide bridges in proteins. Int J Pept Protein Res. 1990 Aug;36(2):147–155. doi: 10.1111/j.1399-3011.1990.tb00958.x. [DOI] [PubMed] [Google Scholar]
  25. Williamson M. P., Havel T. F., Wüthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol. 1985 Mar 20;182(2):295–315. doi: 10.1016/0022-2836(85)90347-x. [DOI] [PubMed] [Google Scholar]
  26. Wilmot C. M., Thornton J. M. Analysis and prediction of the different types of beta-turn in proteins. J Mol Biol. 1988 Sep 5;203(1):221–232. doi: 10.1016/0022-2836(88)90103-9. [DOI] [PubMed] [Google Scholar]
  27. Wilmot C. M., Thornton J. M. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng. 1990 May;3(6):479–493. doi: 10.1093/protein/3.6.479. [DOI] [PubMed] [Google Scholar]
  28. Wüthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol. 1983 Oct 5;169(4):949–961. doi: 10.1016/s0022-2836(83)80144-2. [DOI] [PubMed] [Google Scholar]
  29. Zawadzke L. E., Berg J. M. The structure of a centrosymmetric protein crystal. Proteins. 1993 Jul;16(3):301–305. doi: 10.1002/prot.340160308. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES