Abstract
Flavocytochrome b2 from Saccharomyces cerevisiae catalyzes the oxidation of L-lactate to pyruvate and the electron transfer to cytochrome c in the mitochondrial intermembrane space. It is a homotetramer with a molecular weight of 4 x 58 kDa, each monomer of which is composed of 2 distinct domains, the one carrying FMN and the other, a "b5-like" heme. The native structure has been described at a resolution of 2.4 A (Xia ZX, Mathews FS, 1990, J Mol Biol 212:837-863). The heme domains protrude from the central body of the tetramer consisting of the 4 FMN binding domains. Because only 2 heme domains are visible in the electron density map, the other 2 are probably disordered. We crystallized the Escherichia coli recombinant flavocytochrome b2 from S. cerevisiae inhibited by sulfite. Although the crystals were obtained under very different conditions from those of the pyruvate-containing native enzyme, they were found to be isostructural (P 3(2) 2 1, a = b = 164.5 A, c = 114.0 A). The 2.6-A X-ray structure was extensively refined with X-PLOR (R = 17.3%), which made it possible to describe in detail the recombinant flavocytochrome b2 molecular structure. There exist few differences between the native and recombinant structures, in line with the fact that they show similar kinetic behavior, and they further confirm the intrinsic mobility of the heme domain (Labeyrie F, Beloil JC, Thomas MA, 1988, Biochim Biophys Acta 953:134-141). This structure will be used as a starting model in the structural resolution of flavocytochrome b2 point mutants.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAUDRAS A. Flavocytochrome b2 of baker's yeast: dissociation of flavin and reconstitution of lactic dehydrogenase activity. Biochem Biophys Res Commun. 1962 May 4;7:310–314. doi: 10.1016/0006-291x(62)90197-3. [DOI] [PubMed] [Google Scholar]
- Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
- Black M. T., White S. A., Reid G. A., Chapman S. K. High-level expression of fully active yeast flavocytochrome b2 in Escherichia coli. Biochem J. 1989 Feb 15;258(1):255–259. doi: 10.1042/bj2580255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capeillere-Blandin C. Transient kinetics of the one-electron transfer reaction between reduced flavocytochrome b2 and oxidized cytochrome c. Evidence for the existence of a protein complex in the reaction. Eur J Biochem. 1982 Nov 15;128(2-3):533–542. doi: 10.1111/j.1432-1033.1982.tb06998.x. [DOI] [PubMed] [Google Scholar]
- Capeillère-Blandin C., Bray R. C., Iwatsubo M., Labeyrie F. Flavocytochrome b2: kinetic studies by absorbance and electron-paramagnetic-resonance spectroscopy of electron distribution among prosthetic groups. Eur J Biochem. 1975 Jun;54(2):549–566. doi: 10.1111/j.1432-1033.1975.tb04168.x. [DOI] [PubMed] [Google Scholar]
- Dubois J., Chapman S. K., Mathews F. S., Reid G. A., Lederer F. Substitution of Tyr254 with Phe at the active site of flavocytochrome b2: consequences on catalysis of lactate dehydrogenation. Biochemistry. 1990 Jul 10;29(27):6393–6400. doi: 10.1021/bi00479a008. [DOI] [PubMed] [Google Scholar]
- Gervais M., Groudinsky O., Risler Y., Labeyrie F. Dissection of flavocytochrome b2-a bifunctional enzyme-into a cytochrome core and a flavoprotein molecule. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1543–1551. doi: 10.1016/s0006-291x(77)80153-8. [DOI] [PubMed] [Google Scholar]
- Gervais M., Risler Y., Corazzin S. Proteolytic cleavage of Hansenula anomala flavocytochrome b2 into its two functional domains. Isolation of a highly active flavodehydrogenase and a cytochrome b2 core. Eur J Biochem. 1983 Feb 1;130(2):253–259. doi: 10.1111/j.1432-1033.1983.tb07144.x. [DOI] [PubMed] [Google Scholar]
- Gervais M., Tegoni M. Spontaneous dissociation of a cytochrome core and a biglobular flavoprotein after mild trypsinolysis of the bifunctional Saccharomyces cerevisiae flavocytochrome b2. Eur J Biochem. 1980 Oct;111(2):357–367. doi: 10.1111/j.1432-1033.1980.tb04949.x. [DOI] [PubMed] [Google Scholar]
- Guiard B., Groudinsky O., Lederer F. Homology between bakers' yeast cytochrome b2 and liver microsomal cytochrome b5. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2539–2543. doi: 10.1073/pnas.71.6.2539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guiard B., Lederer F. Complete amino acid sequence of the heme-binding core in bakers' yeast cytochrome b2 (L-(+)-lactate dehydrogenase). Biochimie. 1976;58(3):305–316. doi: 10.1016/s0300-9084(76)80437-3. [DOI] [PubMed] [Google Scholar]
- Guiard B. Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b2). EMBO J. 1985 Dec 1;4(12):3265–3272. doi: 10.1002/j.1460-2075.1985.tb04076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwatsubo M., Mével-Ninio M., Labeyrie F. Rapid kinetic studies of partial reactions in the heme free derivative of L-lactate cytochrome c oxidoreductase (flavocytochrome b2); the flavodehydrogenase function. Biochemistry. 1977 Aug 9;16(16):3558–3566. doi: 10.1021/bi00635a009. [DOI] [PubMed] [Google Scholar]
- Jacq C., Lederer F. Cytochrome b2 from bakers' yeast (L-lactate dehydrogenase). A double-headed enzyme. Eur J Biochem. 1974 Jan 16;41(2):311–320. doi: 10.1111/j.1432-1033.1974.tb03271.x. [DOI] [PubMed] [Google Scholar]
- Kay C. J., Lippay E. W. Mutation of the heme-binding crevice of flavocytochrome b2 from Saccharomyces cerevisiae: altered heme potential and absence of redox cooperativity between heme and FMN centers. Biochemistry. 1992 Nov 24;31(46):11376–11382. doi: 10.1021/bi00161a015. [DOI] [PubMed] [Google Scholar]
- Labeyrie F., Beloeil J. C., Thomas M. A. Evidence by NMR for mobility of the cytochrome domain within flavocytochrome b2. Biochim Biophys Acta. 1988 Mar 23;953(2):134–141. doi: 10.1016/0167-4838(88)90018-0. [DOI] [PubMed] [Google Scholar]
- Lederer F. Sulfite binding to a flavodehydrogenase, cytochrome b2 from baker's yeast. Eur J Biochem. 1978 Aug 1;88(2):425–431. doi: 10.1111/j.1432-1033.1978.tb12465.x. [DOI] [PubMed] [Google Scholar]
- Lindqvist Y., Brändén C. I., Mathews F. S., Lederer F. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J Biol Chem. 1991 Feb 15;266(5):3198–3207. [PubMed] [Google Scholar]
- Mathews F. S., Lederer F. Crystallographic study of bakers' yeast cytochrome b2. J Mol Biol. 1976 Apr 25;102(4):853–857. doi: 10.1016/0022-2836(76)90295-3. [DOI] [PubMed] [Google Scholar]
- Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
- Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
- Pajot P., Claisse M. L. Utilization by yeast of D-lactate and L-lactate as sources of energy in the presence of antimycin A. Eur J Biochem. 1974 Nov 1;49(1):275–285. doi: 10.1111/j.1432-1033.1974.tb03832.x. [DOI] [PubMed] [Google Scholar]
- Pompon D., Iwatsubo M., Lederer F. Flavocytochrome b2 (Baker's yeast). Deuterium isotope effect studied by rapid-kinetic methods as a probe for the mechanism of electron transfer. Eur J Biochem. 1980 Mar;104(2):479–488. doi: 10.1111/j.1432-1033.1980.tb04450.x. [DOI] [PubMed] [Google Scholar]
- Prats M. The association--dissociation states of subunits in the L (+) lactate cytochrome c oxidoreductases (cytochromes b2) extracted from Saccharomyces cerevisiae and Hansenula anomala yeasts. Biochimie. 1978;60(1):77–79. doi: 10.1016/s0300-9084(78)80201-6. [DOI] [PubMed] [Google Scholar]
- Reid G. A., White S., Black M. T., Lederer F., Mathews F. S., Chapman S. K. Probing the active site of flavocytochrome b2 by site-directed mutagenesis. Eur J Biochem. 1988 Dec 15;178(2):329–333. doi: 10.1111/j.1432-1033.1988.tb14454.x. [DOI] [PubMed] [Google Scholar]
- Tegoni M., Mathews F. S. Crystallographic study of the complex between sulfite and bakers' yeast flavocytochrome b2. J Biol Chem. 1988 Dec 25;263(36):19278–19281. [PubMed] [Google Scholar]
- Tegoni M., Mozzarelli A., Rossi G. L., Labeyrie F. Complex formation and intermolecular electron transfer between flavocytochrome b2 in the crystal and cytochrome c. J Biol Chem. 1983 May 10;258(9):5424–5427. [PubMed] [Google Scholar]
- Tegoni M., Silvestrini M. C., Labeyrie F., Brunori M. A temperature-jump study of the electron transfer reactions in Hansenula anomala flavocytochrome b2. Eur J Biochem. 1984 Apr 2;140(1):39–45. doi: 10.1111/j.1432-1033.1984.tb08064.x. [DOI] [PubMed] [Google Scholar]
- Walker M. C., Tollin G. Laser flash photolysis studies of the kinetics of electron-transfer reactions of Saccharomyces flavocytochrome b2: evidence for conformational gating of intramolecular electron transfer induced by pyruvate binding. Biochemistry. 1991 Jun 4;30(22):5546–5555. doi: 10.1021/bi00236a030. [DOI] [PubMed] [Google Scholar]
- Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]