Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1946 Sep 20;30(1):15–23.

HEMOLYTIC SYSTEMS CONTAINING ANIONIC DETERGENTS

Eric Ponder 1
PMCID: PMC2142811  PMID: 19873474

Abstract

1. The members of the homologous series of anionic detergents, the sodium salts of the sulfated straight chain alcohols with the general formula CnH2n+1·SO3·Na, are hemolytic, the lytic activity being at a maximum when the compound contains 14 carbon atoms in the chain. In systems in which lysis is comparatively rapid, the hemolytic effect increases with increasing pH, but in systems containing quantities of lysin near the asymptotic concentrations the pH dependence of the activity is reversed. The effect of temperature is principally one on the velocity constant of the lytic reaction, with smaller effects on the position of the asymptotes of the time-dilution curves and on their shape. 2. The quantities of the detergents which produce disk-sphere transformations are approximately one-tenth of those required to produce complete hemolysis. In most cases, the shape change occurs when there are too few detergent molecules present to cover the red cell surfaces with a monolayer. 3. Plasma inhibits the hemolytic action of these detergents, and, in the quantities in which they occur in plasma, lecithin, serum globulin, cholesterol, and serum albumin, produce inhibitory effects which increase in that order in systems containing the C-14 sulfate. It can be inferred from these inhibitory effects that the anionic detergents can form compounds or complexes with lipid, lipoprotein, and protein components of the red cell ultrastructure.

Full Text

The Full Text of this article is available as a PDF (541.9 KB).


Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES