Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Apr;3(4):608–619. doi: 10.1002/pro.5560030409

DNA binding and bending by the transcription factors GAL4(62*) and GAL4(149*).

K K Rodgers 1, J E Coleman 1
PMCID: PMC2142858  PMID: 8003979

Abstract

The DNA binding domain of the GAL4 transcription factor from yeast is located in the N-terminal 60 residues of the polypeptide of 881 amino acids. This domain binds 2 Zn ions, which form a binuclear cluster, Zn2C6, with 6 C residues, two of which bridge the 2 metal ions (Gardner KH et al., 1991, Biochemistry 30:11292-11302). Binding of Zn or Cd to GAL4 induces the conformation of the protein necessary to recognize the specific DNA sequence, UASG, to which GAL4 binds as a dimer. Gel retardation assays have been utilized to determine the relative affinities of the Zn2 and Zn1 forms of the N-terminal 149 residues of GAL4, GAL4(149*), for UASG DNA sequences. We show that Cd2- and Zn1GAL4(149*) bind to UASG DNA with 2-fold and 4-8-fold lower affinities than Zn2GAL4(149*), respectively. Thus, the metal species and the number of metal ions bound have measurable effects on the specific DNA binding affinity of GAL4, but these differences are small in comparison to the ratio, > 10(3) under some conditions, that characterizes the specific to nonspecific DNA binding affinities of the N-terminal fragments of GAL4. A shorter N-terminal fragment, GAL4(62*), although it continues to recognize the UASG sequence with a high degree of specificity, binds with 1,000-2,000-fold lower affinity than does Zn2GAL4(149*). Gel retardation titrations of a DNA containing 2 UASG sites with increasing concentrations of GAL4(62*) generate a series of 4 retarded bands in contrast to 2 retarded bands formed when the same DNA is titrated with GAL4(149*). These data suggest that GAL4(62*) binds to the UASG sites as individual monomers that dimerize on the DNA, whereas GAL4(149*) binds the UASG DNA cooperatively as a dimer. The approximately 10(3) lower affinity of GAL4(62*) for the UASG DNA can be accounted for by its failure to form dimers in solution. Zn2-, Zn1-, or Cd2GAL4(149*) induces differential rates of gel migration in a series of circularly permutated UASG-containing DNA restriction fragments. Analysis of the data suggests that all 3 proteins cause a 26 degrees angle of bend in the DNA when bound to 1 UASG site and 45 degrees when bound to 2 tandem UASG sites. The same assay shows that GAL4(62*) does not induce significant bending of the UASG DNA sequences. Thus, the additional subdomains found in the larger polypeptide fragment, GAL4(149*), must exert an additional force on the DNA either through direct contacts with the DNA or indirectly through altered protein conformation.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baleja J. D., Marmorstein R., Harrison S. C., Wagner G. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature. 1992 Apr 2;356(6368):450–453. doi: 10.1038/356450a0. [DOI] [PubMed] [Google Scholar]
  2. Coleman J. E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem. 1992;61:897–946. doi: 10.1146/annurev.bi.61.070192.004341. [DOI] [PubMed] [Google Scholar]
  3. Crothers D. M., Haran T. E., Nadeau J. G. Intrinsically bent DNA. J Biol Chem. 1990 May 5;265(13):7093–7096. [PubMed] [Google Scholar]
  4. Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gadhavi P. L., Davis A. L., Povey J. F., Keeler J., Laue E. D. Polypeptide-metal cluster connectivities in Cd(II) GAL4. FEBS Lett. 1991 Apr 9;281(1-2):223–226. doi: 10.1016/0014-5793(91)80398-m. [DOI] [PubMed] [Google Scholar]
  6. Gardner K. H., Pan T., Narula S., Rivera E., Coleman J. E. Structure of the binuclear metal-binding site in the GAL4 transcription factor. Biochemistry. 1991 Nov 26;30(47):11292–11302. doi: 10.1021/bi00111a015. [DOI] [PubMed] [Google Scholar]
  7. Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev. 1987 Dec;51(4):458–476. doi: 10.1128/mr.51.4.458-476.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnston M. Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein. Nature. 1987 Jul 23;328(6128):353–355. doi: 10.1038/328353a0. [DOI] [PubMed] [Google Scholar]
  9. Johnston S. A., Salmeron J. M., Jr, Dincher S. S. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell. 1987 Jul 3;50(1):143–146. doi: 10.1016/0092-8674(87)90671-4. [DOI] [PubMed] [Google Scholar]
  10. Kang T., Martins T., Sadowski I. Wild type GAL4 binds cooperatively to the GAL1-10 UASG in vitro. J Biol Chem. 1993 May 5;268(13):9629–9635. [PubMed] [Google Scholar]
  11. Koo H. S., Wu H. M., Crothers D. M. DNA bending at adenine . thymine tracts. Nature. 1986 Apr 10;320(6062):501–506. doi: 10.1038/320501a0. [DOI] [PubMed] [Google Scholar]
  12. Kraulis P. J., Raine A. R., Gadhavi P. L., Laue E. D. Structure of the DNA-binding domain of zinc GAL4. Nature. 1992 Apr 2;356(6368):448–450. doi: 10.1038/356448a0. [DOI] [PubMed] [Google Scholar]
  13. Ma J., Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell. 1987 Mar 13;48(5):847–853. doi: 10.1016/0092-8674(87)90081-x. [DOI] [PubMed] [Google Scholar]
  14. Mau T., Baleja J. D., Wagner G. Effects of DNA binding and metal substitution on the dynamics of the GAL4 DNA-binding domain as studied by amide proton exchange. Protein Sci. 1992 Nov;1(11):1403–1412. doi: 10.1002/pro.5560011102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miller J., McLachlan A. D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pan T., Coleman J. E. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2077–2081. doi: 10.1073/pnas.87.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pan T., Coleman J. E. Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor. Proc Natl Acad Sci U S A. 1989 May;86(9):3145–3149. doi: 10.1073/pnas.86.9.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pan T., Halvorsen Y. D., Dickson R. C., Coleman J. E. The transcription factor LAC9 from Kluyveromyces lactis-like GAL4 from Saccharomyces cerevisiae forms a Zn(II)2Cys6 binuclear cluster. J Biol Chem. 1990 Dec 15;265(35):21427–21429. [PubMed] [Google Scholar]
  19. Parthun M. R., Jaehning J. A. Purification and characterization of the yeast transcriptional activator GAL4. J Biol Chem. 1990 Jan 5;265(1):209–213. [PubMed] [Google Scholar]
  20. Senear D. F., Brenowitz M. Determination of binding constants for cooperative site-specific protein-DNA interactions using the gel mobility-shift assay. J Biol Chem. 1991 Jul 25;266(21):13661–13671. [PubMed] [Google Scholar]
  21. Shirakawa M., Fairbrother W. J., Serikawa Y., Ohkubo T., Kyogoku Y., Wright P. E. Assignment of 1H, 15N, and 13C resonances, identification of elements of secondary structure and determination of the global fold of the DNA-binding domain of GAL4. Biochemistry. 1993 Mar 9;32(9):2144–2153. doi: 10.1021/bi00060a004. [DOI] [PubMed] [Google Scholar]
  22. Taylor I. C., Workman J. L., Schuetz T. J., Kingston R. E. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 1991 Jul;5(7):1285–1298. doi: 10.1101/gad.5.7.1285. [DOI] [PubMed] [Google Scholar]
  23. Thompson J. F., Landy A. Empirical estimation of protein-induced DNA bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res. 1988 Oct 25;16(20):9687–9705. doi: 10.1093/nar/16.20.9687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES