Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Apr;3(4):628–637. doi: 10.1002/pro.5560030411

Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phospholipids.

J R Lakowicz 1, I Gryczynski 1, G Laczko 1, W Wiczk 1, M L Johnson 1
PMCID: PMC2142859  PMID: 8003981

Abstract

We used frequency-domain measurements of fluorescence resonance energy transfer to measure the distribution of distances between Trp-19 of melittin and a 1-dimethylamino-5-sulfonylnaphthalene (dansyl) residue on the N-terminal-alpha-amino group. Distance distributions were obtained for melittin free in solution and when complexed with calmodulin (CaM), troponin C (TnC), or palmitoyloleoyl-L-alpha-phosphatidylcholine (POPC) vesicles. A wide range of donor (Trp-19)-to-acceptor (dansyl) distances was found for free melittin, which is consistent with that expected for the random coil state, characterized by a Gaussian width (full width at half maxima) of 28.2 A. In contrast, narrow distance distributions were found for melittin complexed with CaM, 8.2 A, or with POPC vesicles, 4.9 A. A somewhat wider distribution was found for the melittin complex with TnC, 12.8 A, suggesting the presence of heterogeneity in the mode of binding between melittin and TnC. For all the complexes the mean Trp-19 to dansyl distance was near 20 A. This value is somewhat smaller than expected for the free alpha-helical state of melittin, suggesting that binding with CaM or TnC results in a modest decrease in the length of the melittin molecule.

Full Text

The Full Text of this article is available as a PDF (976.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beals J. M., Haas E., Krausz S., Scheraga H. A. Conformational studies of a peptide corresponding to a region of the C-terminus of ribonuclease A: implications as a potential chain-folding initiation site. Biochemistry. 1991 Aug 6;30(31):7680–7692. doi: 10.1021/bi00245a004. [DOI] [PubMed] [Google Scholar]
  2. Beschiaschvili G., Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990 Jan 9;29(1):52–58. doi: 10.1021/bi00453a007. [DOI] [PubMed] [Google Scholar]
  3. Dale R. E., Eisinger J., Blumberg W. E. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J. 1979 May;26(2):161–193. doi: 10.1016/S0006-3495(79)85243-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson C. R., Drake A. F., Helliwell J., Hider R. C. The interaction of bee melittin with lipid bilayer membranes. Biochim Biophys Acta. 1978 Jun 16;510(1):75–86. doi: 10.1016/0005-2736(78)90131-1. [DOI] [PubMed] [Google Scholar]
  5. Drake A. F., Hider R. C. The structure of melittin in lipid bilayer membranes. Biochim Biophys Acta. 1979 Aug 7;555(2):371–373. doi: 10.1016/0005-2736(79)90178-0. [DOI] [PubMed] [Google Scholar]
  6. Englert A., Leclerc M. Intramolecular energy transfer in molecules with a large number of conformations. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1050–1051. doi: 10.1073/pnas.75.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Faucon J. F., Dufourcq J., Lussan C. The self-association of melittin and its binding to lipids: an intrinsic fluorescence polarization study. FEBS Lett. 1979 Jun 1;102(1):187–190. doi: 10.1016/0014-5793(79)80956-4. [DOI] [PubMed] [Google Scholar]
  8. Faucon J. F., Lakowicz J. R. Anisotropy decay of diphenylhexatriene in melittin-phospholipid complexes by multifrequency phase-modulation fluorometry. Arch Biochem Biophys. 1987 Jan;252(1):245–258. doi: 10.1016/0003-9861(87)90029-4. [DOI] [PubMed] [Google Scholar]
  9. Follenius-Wund A., Mely Y., Gerard D. Spectroscopic evidence of two melittin molecules bound to Ca2+-calmodulin. Biochem Int. 1987 Oct;15(4):823–833. [PubMed] [Google Scholar]
  10. Goto Y., Hagihara Y. Mechanism of the conformational transition of melittin. Biochemistry. 1992 Jan 28;31(3):732–738. doi: 10.1021/bi00118a014. [DOI] [PubMed] [Google Scholar]
  11. Gratton E., Limkeman M. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J. 1983 Dec;44(3):315–324. doi: 10.1016/S0006-3495(83)84305-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gratton E., Limkeman M., Lakowicz J. R., Maliwal B. P., Cherek H., Laczko G. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys J. 1984 Oct;46(4):479–486. doi: 10.1016/S0006-3495(84)84044-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grinvald A., Steinberg I. Z. The fluorescence decay of tryptophan residues in native and denatured proteins. Biochim Biophys Acta. 1976 Apr 14;427(2):663–678. doi: 10.1016/0005-2795(76)90210-5. [DOI] [PubMed] [Google Scholar]
  14. Haas E., Wilchek M., Katchalski-Katzir E., Steinberg I. Z. Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. Proc Natl Acad Sci U S A. 1975 May;72(5):1807–1811. doi: 10.1073/pnas.72.5.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heidorn D. B., Seeger P. A., Rokop S. E., Blumenthal D. K., Means A. R., Crespi H., Trewhella J. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase. Biochemistry. 1989 Aug 8;28(16):6757–6764. doi: 10.1021/bi00442a032. [DOI] [PubMed] [Google Scholar]
  16. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  17. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  18. Johnson M. L. Evaluation and propagation of confidence intervals in nonlinear, asymmetrical variance spaces. Analysis of ligand-binding data. Biophys J. 1983 Oct;44(1):101–106. doi: 10.1016/S0006-3495(83)84281-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knöppel E., Eisenberg D., Wickner W. Interactions of melittin, a preprotein model, with detergents. Biochemistry. 1979 Sep 18;18(19):4177–4181. doi: 10.1021/bi00586a021. [DOI] [PubMed] [Google Scholar]
  20. Kretsinger R. H., Rudnick S. E., Weissman L. J. Crystal structure of calmodulin. J Inorg Biochem. 1986 Oct-Nov;28(2-3):289–302. doi: 10.1016/0162-0134(86)80093-9. [DOI] [PubMed] [Google Scholar]
  21. Kuchinka E., Seelig J. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry. 1989 May 16;28(10):4216–4221. doi: 10.1021/bi00436a014. [DOI] [PubMed] [Google Scholar]
  22. Lakowicz J. R., Cherek H., Gryczynski I., Joshi N., Johnson M. L. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics. Biophys J. 1987 May;51(5):755–768. doi: 10.1016/S0006-3495(87)83402-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lakowicz J. R., Gryczynski I., Cheung H. C., Wang C. K., Johnson M. L. Distance distributions in native and random-coil troponin I from frequency-domain measurements of fluorescence energy transfer. Biopolymers. 1988 May;27(5):821–830. doi: 10.1002/bip.360270509. [DOI] [PubMed] [Google Scholar]
  24. Lakowicz J. R., Gryczynski I., Cheung H. C., Wang C. K., Johnson M. L., Joshi N. Distance distributions in proteins recovered by using frequency-domain fluorometry. Applications to troponin I and its complex with troponin C. Biochemistry. 1988 Dec 27;27(26):9149–9160. doi: 10.1021/bi00426a012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lakowicz J. R., Gryczynski I., Kuśba J., Wiczk W., Szmacinski H., Johnson M. L. Site-to-site diffusion in proteins as observed by energy transfer and frequency-domain fluorometry. Photochem Photobiol. 1994 Jan;59(1):16–29. doi: 10.1111/j.1751-1097.1994.tb04996.x. [DOI] [PubMed] [Google Scholar]
  26. Lakowicz J. R., Gryczynski I., Wiczk W., Laczko G., Prendergast F. C., Johnson M. L. Conformational distributions of melittin in water/methanol mixtures from frequency-domain measurements of nonradiative energy transfer. Biophys Chem. 1990 Jul;36(2):99–115. doi: 10.1016/0301-4622(90)85014-w. [DOI] [PubMed] [Google Scholar]
  27. Lakowicz J. R., Laczko G., Gryczynski I., Cherek H. Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry. J Biol Chem. 1986 Feb 15;261(5):2240–2245. [PubMed] [Google Scholar]
  28. Maulet Y., Cox J. A. Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry. 1983 Nov 22;22(24):5680–5686. doi: 10.1021/bi00293a035. [DOI] [PubMed] [Google Scholar]
  29. Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
  30. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  31. Milos M., Schaer J. J., Comte M., Cox J. A. Microcalorimetric investigation of the interactions in the ternary complex calmodulin-calcium-melittin. J Biol Chem. 1987 Feb 25;262(6):2746–2749. [PubMed] [Google Scholar]
  32. Prêcheur B., Munier H., Mispelter J., Bârzu O., Craescu C. T. 1H and 15N NMR characterization of free and bound states of an amphiphilic peptide interacting with calmodulin. Biochemistry. 1992 Jan 14;31(1):229–236. doi: 10.1021/bi00116a032. [DOI] [PubMed] [Google Scholar]
  33. Roth S. M., Schneider D. M., Strobel L. A., VanBerkum M. F., Means A. R., Wand A. J. Structure of the smooth muscle myosin light-chain kinase calmodulin-binding domain peptide bound to calmodulin. Biochemistry. 1991 Oct 22;30(42):10078–10084. doi: 10.1021/bi00106a003. [DOI] [PubMed] [Google Scholar]
  34. Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
  35. Steiner R. F., Marshall L., Needleman D. The interaction of melittin with calmodulin and its tryptic fragments. Arch Biochem Biophys. 1986 Apr;246(1):286–300. doi: 10.1016/0003-9861(86)90474-1. [DOI] [PubMed] [Google Scholar]
  36. Steiner R. F., Norris L. The interaction of melittin with troponin C. Arch Biochem Biophys. 1987 Apr;254(1):342–352. doi: 10.1016/0003-9861(87)90110-x. [DOI] [PubMed] [Google Scholar]
  37. Strom R., Crifo C., Viti V., Guidoni L., Podo F. Variations in circular dichroism and proton-NMR relaxation properties of melittin upon interaction with phospholipids. FEBS Lett. 1978 Dec 1;96(1):45–50. doi: 10.1016/0014-5793(78)81059-x. [DOI] [PubMed] [Google Scholar]
  38. Stryer L., Haugland R. P. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 1967 Aug;58(2):719–726. doi: 10.1073/pnas.58.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Strynadka N. C., James M. N. Model for the interaction of amphiphilic helices with troponin C and calmodulin. Proteins. 1990;7(3):234–248. doi: 10.1002/prot.340070305. [DOI] [PubMed] [Google Scholar]
  40. Sundaralingam M., Bergstrom R., Strasburg G., Rao S. T., Roychowdhury P., Greaser M., Wang B. C. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985 Feb 22;227(4689):945–948. doi: 10.1126/science.3969570. [DOI] [PubMed] [Google Scholar]
  41. Talbot J. C., Dufourcq J., de Bony J., Faucon J. F., Lussan C. Conformational change and self association of monomeric melittin. FEBS Lett. 1979 Jun 1;102(1):191–193. doi: 10.1016/0014-5793(79)80957-6. [DOI] [PubMed] [Google Scholar]
  42. Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
  43. Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vorherr T., Kessler O., Mark A., Carafoli E. Construction and molecular dynamics simulation of calmodulin in the extended and in a bent conformation. Eur J Biochem. 1992 Mar 1;204(2):931–937. doi: 10.1111/j.1432-1033.1992.tb16714.x. [DOI] [PubMed] [Google Scholar]
  45. Weaver A. J., Kemple M. D., Prendergast F. G. Characterization of selectively 13C-labeled synthetic melittin and melittin analogues in isotropic solvents by circular dichroism, fluorescence, and NMR spectroscopy. Biochemistry. 1989 Oct 17;28(21):8614–8623. doi: 10.1021/bi00447a052. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES