Abstract
A technique is described for the rapid, sensitive analysis of posttranslational modifications of proteins that have been separated by 2-dimensional electrophoresis and blotted onto a membrane with a cationic surface. The isolated protein spots visualized by reverse staining of the blotting membrane are excised, washed, and subjected to chemical (cyanogen bromide) and/or enzymatic (endoproteinase Lys-C) degradation directly on the membrane. The resulting mixture of peptide fragments is extracted from the membrane into a solution that is compatible with matrix-assisted laser desorption mass spectrometric analysis and analyzed without fractionation. Relatively accurate (+/- 1 Da) mass determination of these peptide fragments provides a facile and sensitive means for detecting the presence of modifications and for correlating such modifications with the differential mobility of different isoforms of a given protein during 2-dimensional electrophoresis. The technique is applied to the determination of sites of phosphorylation in synapsins Ia and Ib, neuronal phosphoproteins that are believed to function in the regulation of neurotransmitter release and are substrates for cAMP and Ca2+/calmodulin-dependent protein kinases, which appear to control their biological activity.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebersold R. Mass spectrometry of proteins and peptides in biotechnology. Curr Opin Biotechnol. 1993 Aug;4(4):412–419. doi: 10.1016/0958-1669(93)90006-i. [DOI] [PubMed] [Google Scholar]
- Beavis R. C., Chait B. T. Factors affecting the ultraviolet laser desorption of proteins. Rapid Commun Mass Spectrom. 1989 Jul;3(7):233–237. doi: 10.1002/rcm.1290030708. [DOI] [PubMed] [Google Scholar]
- Beavis R. C., Chait B. T. High-accuracy molecular mass determination of proteins using matrix-assisted laser desorption mass spectrometry. Anal Chem. 1990 Sep 1;62(17):1836–1840. doi: 10.1021/ac00216a020. [DOI] [PubMed] [Google Scholar]
- Beavis R. C., Chait B. T. Rapid, sensitive analysis of protein mixtures by mass spectrometry. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6873–6877. doi: 10.1073/pnas.87.17.6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biemann K. Mass spectrometry of peptides and proteins. Annu Rev Biochem. 1992;61:977–1010. doi: 10.1146/annurev.bi.61.070192.004553. [DOI] [PubMed] [Google Scholar]
- Bähler M., Greengard P. Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature. 1987 Apr 16;326(6114):704–707. doi: 10.1038/326704a0. [DOI] [PubMed] [Google Scholar]
- Camilleri P., Haskins N. J., Hill A. J., New A. P. A coordinated approach towards the molecular weight determination of peptides by gel electrophoresis and fast-atom bombardment mass spectrometry. Rapid Commun Mass Spectrom. 1989 Dec;3(12):440–442. doi: 10.1002/rcm.1290031209. [DOI] [PubMed] [Google Scholar]
- Chait B. T., Kent S. B. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science. 1992 Sep 25;257(5078):1885–1894. doi: 10.1126/science.1411504. [DOI] [PubMed] [Google Scholar]
- Czernik A. J., Pang D. T., Greengard P. Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7518–7522. doi: 10.1073/pnas.84.21.7518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daga A., Micol V., Hess D., Aebersold R., Attardi G. Molecular characterization of the transcription termination factor from human mitochondria. J Biol Chem. 1993 Apr 15;268(11):8123–8130. [PubMed] [Google Scholar]
- Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
- Hall S. C., Smith D. M., Masiarz F. R., Soo V. W., Tran H. M., Epstein L. B., Burlingame A. L. Mass spectrometric and Edman sequencing of lipocortin I isolated by two-dimensional SDS/PAGE of human melanoma lysates. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1927–1931. doi: 10.1073/pnas.90.5.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess D., Covey T. C., Winz R., Brownsey R. W., Aebersold R. Analytical and micropreparative peptide mapping by high performance liquid chromatography/electrospray mass spectrometry of proteins purified by gel electrophoresis. Protein Sci. 1993 Aug;2(8):1342–1351. doi: 10.1002/pro.5560020817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James P., Quadroni M., Carafoli E., Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993 Aug 31;195(1):58–64. doi: 10.1006/bbrc.1993.2009. [DOI] [PubMed] [Google Scholar]
- Mahrenholz A. M., Yeh C. H., Shively J. E., Hefta S. A. Microsequence and mass spectral analysis of nonspecific cross-reacting antigen 160, a CD15-positive neutrophil membrane glycoprotein. Demonstration of identity with biliary glycoprotein. J Biol Chem. 1993 Jun 25;268(18):13015–13018. [PubMed] [Google Scholar]
- Mann M., Højrup P., Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom. 1993 Jun;22(6):338–345. doi: 10.1002/bms.1200220605. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Pawson T., Gish G. D. SH2 and SH3 domains: from structure to function. Cell. 1992 Oct 30;71(3):359–362. doi: 10.1016/0092-8674(92)90504-6. [DOI] [PubMed] [Google Scholar]
- Stolowitz M. L. Chemical protein sequencing and amino acid analysis. Curr Opin Biotechnol. 1993 Feb;4(1):9–13. doi: 10.1016/0958-1669(93)90025-r. [DOI] [PubMed] [Google Scholar]
- Südhof T. C., Czernik A. J., Kao H. T., Takei K., Johnston P. A., Horiuchi A., Kanazir S. D., Wagner M. A., Perin M. S., De Camilli P. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science. 1989 Sep 29;245(4925):1474–1480. doi: 10.1126/science.2506642. [DOI] [PubMed] [Google Scholar]
- Valtorta F., Benfenati F., Greengard P. Structure and function of the synapsins. J Biol Chem. 1992 Apr 15;267(11):7195–7198. [PubMed] [Google Scholar]
- Wang Y. K., Liao P. C., Allison J., Gage D. A., Andrews P. C., Lubman D. M., Hanash S. M., Strahler J. R. Phorbol 12-myristate 13-acetate-induced phosphorylation of Op18 in Jurkat T cells. Identification of phosphorylation sites by matrix-assisted laser desorption ionization mass spectrometry. J Biol Chem. 1993 Jul 5;268(19):14269–14277. [PubMed] [Google Scholar]
- Wettenhall R. E., Aebersold R. H., Hood L. E. Solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels. Methods Enzymol. 1991;201:186–199. doi: 10.1016/0076-6879(91)01017-v. [DOI] [PubMed] [Google Scholar]
- Yates J. R., 3rd, Speicher S., Griffin P. R., Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem. 1993 Nov 1;214(2):397–408. doi: 10.1006/abio.1993.1514. [DOI] [PubMed] [Google Scholar]