Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Jun;3(6):898–910. doi: 10.1002/pro.5560030605

Kringle-kringle interactions in multimer kringle structures.

K Padmanabhan 1, T P Wu 1, K G Ravichandran 1, A Tulinsky 1
PMCID: PMC2142883  PMID: 8069221

Abstract

The crystal structure of a monoclinic form of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the orthorthombic structure as a model and it has been refined by restrained least-squares methods to an R factor of 16.4% at 2.25 A resolution. The X-PLOR structure of kringle 2 of tissue plasminogen activator (t-PAK2) has been refined further using PROFFT (R = 14.5% at 2.38 A resolution). The PGK4 structure has 2 and t-PAK2 has 3 independent molecules in the asymmetric unit. There are 5 different noncrystallographic symmetry "dimers" in PGK4. Three make extensive kringle-kringle interactions related by noncrystallographic 2(1) screw axes without blocking the lysine binding site. Such associations may occur in multikringle structures such as prothrombin, hepatocyte growth factor, plasminogen (PG), and apolipoprotein [a]. The t-PAK2 structure also has noncrystallographic screw symmetry (3(1)) and mimics fibrin binding mode by having lysine of one molecule interacting electrostatically with the lysine binding site of another kringle. This ligand-like binding interaction may be important in kringle-kringle interactions involving non-lysine binding kringles with lysine or pseudo-lysine binding sites. Electrostatic intermolecular interactions involving the lysine binding site are also found in the crystal structures of PGK1 and orthorhombic PGK4. Anions associate with the cationic centers of these and t-PAK2 that appear to be more than occasional components of lysine binding site regions.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arni R. K., Padmanabhan K., Padmanabhan K. P., Wu T. P., Tulinsky A. Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin. Biochemistry. 1993 May 11;32(18):4727–4737. doi: 10.1021/bi00069a006. [DOI] [PubMed] [Google Scholar]
  2. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  3. Byeon I. J., Kelley R. F., Llinás M. 1H NMR structural characterization of a recombinant kringle 2 domain from human tissue-type plasminogen activator. Biochemistry. 1989 Nov 28;28(24):9350–9360. doi: 10.1021/bi00450a016. [DOI] [PubMed] [Google Scholar]
  4. Byeon I. J., Llinás M. Solution structure of the tissue-type plasminogen activator kringle 2 domain complexed to 6-aminohexanoic acid an antifibrinolytic drug. J Mol Biol. 1991 Dec 20;222(4):1035–1051. doi: 10.1016/0022-2836(91)90592-t. [DOI] [PubMed] [Google Scholar]
  5. De Serrano V. S., Sehl L. C., Castellino F. J. Direct identification of lysine-33 as the principal cationic center of the omega-amino acid binding site of the recombinant kringle 2 domain of tissue-type plasminogen activator. Arch Biochem Biophys. 1992 Jan;292(1):206–212. doi: 10.1016/0003-9861(92)90069-9. [DOI] [PubMed] [Google Scholar]
  6. Esmon C. T., Jackson C. M. The conversion of prothrombin to thrombin. IV. The function of the fragment 2 region during activation in the presence of factor V. J Biol Chem. 1974 Dec 25;249(24):7791–7797. [PubMed] [Google Scholar]
  7. Gardell S. J., Duong L. T., Diehl R. E., York J. D., Hare T. R., Register R. B., Jacobs J. W., Dixon R. A., Friedman P. A. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem. 1989 Oct 25;264(30):17947–17952. [PubMed] [Google Scholar]
  8. Gitel S. N., Owen W. G., Esmon C. T., Jackson C. M. A polypeptide region of bovine prothrombin specific for binding to phospholipids. Proc Natl Acad Sci U S A. 1973 May;70(5):1344–1348. doi: 10.1073/pnas.70.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guevara J., Jr, Jan A. Y., Knapp R., Tulinsky A., Morrisett J. D. Comparison of ligand-binding sites of modeled apo[a] kringle-like sequences in human lipoprotein[a]. Arterioscler Thromb. 1993 May;13(5):758–770. doi: 10.1161/01.atv.13.5.758. [DOI] [PubMed] [Google Scholar]
  10. Günzler W. A., Steffens G. J., Otting F., Kim S. M., Frankus E., Flohé L. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain. Hoppe Seylers Z Physiol Chem. 1982 Oct;363(10):1155–1165. doi: 10.1515/bchm2.1982.363.2.1155. [DOI] [PubMed] [Google Scholar]
  11. Hochschwender S. M., Laursen R. A. The lysine binding sites of human plasminogen. Evidence for a critical tryptophan in the binding site of kringle 4. J Biol Chem. 1981 Nov 10;256(21):11172–11176. [PubMed] [Google Scholar]
  12. Hoover G. J., Menhart N., Martin A., Warder S., Castellino F. J. Amino acids of the recombinant kringle 1 domain of human plasminogen that stabilize its interaction with omega-amino acids. Biochemistry. 1993 Oct 19;32(41):10936–10943. doi: 10.1021/bi00092a002. [DOI] [PubMed] [Google Scholar]
  13. Li X., Smith R. A., Dobson C. M. Sequential 1H NMR assignments and secondary structure of the kringle domain from urokinase. Biochemistry. 1992 Oct 13;31(40):9562–9571. doi: 10.1021/bi00155a008. [DOI] [PubMed] [Google Scholar]
  14. Mangel W. F., Lin B. H., Ramakrishnan V. Characterization of an extremely large, ligand-induced conformational change in plasminogen. Science. 1990 Apr 6;248(4951):69–73. doi: 10.1126/science.2108500. [DOI] [PubMed] [Google Scholar]
  15. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  16. Miller S., Lesk A. M., Janin J., Chothia C. The accessible surface area and stability of oligomeric proteins. 1987 Aug 27-Sep 2Nature. 328(6133):834–836. doi: 10.1038/328834a0. [DOI] [PubMed] [Google Scholar]
  17. Mulichak A. M., Park C. H., Tulinsky A., Petros A. M., Llinás M. Human plasminogen kringle 4. Crystallization and preliminary diffraction data of two different crystal forms. J Biol Chem. 1989 Feb 5;264(4):1922–1923. [PubMed] [Google Scholar]
  18. Myrmel K. H., Lundblad R. L., Mann K. G. Characteristics of the association between prothrombin fragment 2 and alpha-thrombin. Biochemistry. 1976 Apr 20;15(8):1767–1773. doi: 10.1021/bi00653a027. [DOI] [PubMed] [Google Scholar]
  19. Nakamura T., Nishizawa T., Hagiya M., Seki T., Shimonishi M., Sugimura A., Tashiro K., Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989 Nov 23;342(6248):440–443. doi: 10.1038/342440a0. [DOI] [PubMed] [Google Scholar]
  20. Nelsestuen G. L., Zytkovicz T. H., Howard J. B. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem. 1974 Oct 10;249(19):6347–6350. [PubMed] [Google Scholar]
  21. Nielsen P. R., Einer-Jensen K., Holtet T. L., Andersen B. D., Poulsen F. M., Thøgersen H. C. Protein-ligand interactions in the lysine-binding site of plasminogen kringle 4 are different in crystal and solution. Electrostatic interactions studied by site-directed mutagenesis exclude Lys35 as an important acceptor in solution. Biochemistry. 1993 Dec 7;32(48):13019–13025. doi: 10.1021/bi00211a010. [DOI] [PubMed] [Google Scholar]
  22. Pennica D., Holmes W. E., Kohr W. J., Harkins R. N., Vehar G. A., Ward C. A., Bennett W. F., Yelverton E., Seeburg P. H., Heyneker H. L. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983 Jan 20;301(5897):214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
  23. Ramakrishnan V., Patthy L., Mangel W. F. Conformation of Lys-plasminogen and the kringle 1-3 fragment of plasminogen analyzed by small-angle neutron scattering. Biochemistry. 1991 Apr 23;30(16):3963–3969. doi: 10.1021/bi00230a023. [DOI] [PubMed] [Google Scholar]
  24. Rickli E. E., Otavsky W. I. A new method of isolation and some properties of the heavy chain of human plasmin. Eur J Biochem. 1975 Nov 15;59(2):441–447. doi: 10.1111/j.1432-1033.1975.tb02472.x. [DOI] [PubMed] [Google Scholar]
  25. Seshadri T. P., Tulinsky A., Skrzypczak-Jankun E., Park C. H. Structure of bovine prothrombin fragment 1 refined at 2.25 A resolution. J Mol Biol. 1991 Jul 20;220(2):481–494. doi: 10.1016/0022-2836(91)90025-2. [DOI] [PubMed] [Google Scholar]
  26. Soriano-Garcia M., Padmanabhan K., de Vos A. M., Tulinsky A. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry. 1992 Mar 10;31(9):2554–2566. doi: 10.1021/bi00124a016. [DOI] [PubMed] [Google Scholar]
  27. Steffens G. J., Günzler W. A., Otting F., Frankus E., Flohé L. The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe Seylers Z Physiol Chem. 1982 Sep;363(9):1043–1058. doi: 10.1515/bchm2.1982.363.2.1043. [DOI] [PubMed] [Google Scholar]
  28. Stenflo J., Fernlund P., Egan W., Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2730–2733. doi: 10.1073/pnas.71.7.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stephens R. W., Bokman A. M., Myöhänen H. T., Reisberg T., Tapiovaara H., Pedersen N., Grøndahl-Hansen J., Llinás M., Vaheri A. Heparin binding to the urokinase kringle domain. Biochemistry. 1992 Aug 25;31(33):7572–7579. doi: 10.1021/bi00148a019. [DOI] [PubMed] [Google Scholar]
  30. Wu T. P., Padmanabhan K., Tulinsky A., Mulichak A. M. The refined structure of the epsilon-aminocaproic acid complex of human plasminogen kringle 4. Biochemistry. 1991 Oct 29;30(43):10589–10594. doi: 10.1021/bi00107a030. [DOI] [PubMed] [Google Scholar]
  31. Yeates T. O. Simple statistics for intensity data from twinned specimens. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):142–144. doi: 10.1107/s0108767387009632. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES