Abstract
The 3-dimensional structure of inorganic pyrophosphatase from Thermus thermophilus (T-PPase) has been determined by X-ray diffraction at 2.0 A resolution and refined to R = 15.3%. The structure consists of an antiparallel closed beta-sheet and 2 alpha-helices and resembles that of the yeast enzyme in spite of the large difference in size (174 and 286 residues, respectively), little sequence similarity beyond the active center (about 20%), and different oligomeric organization (hexameric and dimeric, respectively). The similarity of the polypeptide folding in the 2 PPases provides a very strong argument in favor of an evolutionary relationship between the yeast and bacterial enzymes. The same Greek-key topology of the 5-stranded beta-barrel was found in the OB-fold proteins, the bacteriophage gene-5 DNA-binding protein, toxic-shock syndrome toxin-1, and the major cold-shock protein of Bacillus subtilis. Moreover, all known nucleotide-binding sites in these proteins are located on the same side of the beta-barrel as the active center in T-PPase. Analysis of the active center of T-PPase revealed 17 residues of potential functional importance, 16 of which are strictly conserved in all sequences of soluble PPases. Their possible role in the catalytic mechanism is discussed on the basis of the present crystal structure and with respect to site-directed mutagenesis studies on the Escherichia coli enzyme. The observed oligomeric organization of T-PPase allows us to suggest a possible mechanism for the allosteric regulation of hexameric PPases.
Full Text
The Full Text of this article is available as a PDF (6.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baykov A. A., Shestakov A. S., Kasho V. N., Vener A. V., Ivanov A. H. Kinetics and thermodynamics of catalysis by the inorganic pyrophosphatase of Escherichia coli in both directions. Eur J Biochem. 1990 Dec 27;194(3):879–887. doi: 10.1111/j.1432-1033.1990.tb19482.x. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bond M. W., Chiu N. Y., Cooperman B. S. Identification of an arginine important for enzymatic activity within the covalent structure of yeast inorganic pyrophosphatase. Biochemistry. 1980 Jan 8;19(1):94–102. doi: 10.1021/bi00542a015. [DOI] [PubMed] [Google Scholar]
- Borschik I. B., Pestova T. V., Sklyankina V. A., Avaeva S. M. The quaternary structure of E. coli inorganic pyrophosphatase is not required for catalytic activity. FEBS Lett. 1985 May 6;184(1):65–67. doi: 10.1016/0014-5793(85)80654-2. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S., Baykov A. A., Lahti R. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci. 1992 Jul;17(7):262–266. doi: 10.1016/0968-0004(92)90406-y. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S., Panackal A., Springs B., Hamm D. J. Divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase. Biochemistry. 1981 Oct 13;20(21):6051–6060. doi: 10.1021/bi00524a021. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S. The mechanism of action of yeast inorganic pyrophosphatase. Methods Enzymol. 1982;87:526–548. doi: 10.1016/s0076-6879(82)87030-4. [DOI] [PubMed] [Google Scholar]
- Formaziuk V. E., Gorshkova T. Iu, Boldyrev A. A., Sergienko V. I. Kharakteristika khloraminovykh kompleksov karnozina s gipokhlorit- anionom. Biokhimiia. 1992 Sep;57(9):1324–1329. [PubMed] [Google Scholar]
- Gonzalez M. A., Cooperman B. S. Glutamic acid-149 is important for enzymatic activity of yeast inorganic pyrophosphatase. Biochemistry. 1986 Nov 4;25(22):7179–7185. doi: 10.1021/bi00370a062. [DOI] [PubMed] [Google Scholar]
- Herbomel P., Ninio J. Fidélité d'une réaction de polymérisation selon la proximité de l'équilibre. C R Seances Acad Sci D. 1980 Nov 24;291(11):881–884. [PubMed] [Google Scholar]
- Höhne W. E., Wessner H., Kuranova I. P., Obmolova G. V. Kinetic characterization of a thermostable inorganic pyrophosphatase from Thermus thermophilus. Biomed Biochim Acta. 1988;47(12):941–947. [PubMed] [Google Scholar]
- Ichiba T., Takenaka O., Samejima T., Hachimori A. Primary structure of the inorganic pyrophosphatase from thermophilic bacterium PS-3. J Biochem. 1990 Oct;108(4):572–578. doi: 10.1093/oxfordjournals.jbchem.a123244. [DOI] [PubMed] [Google Scholar]
- Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kaneko S., Ichiba T., Hirano N., Hachimori A. Modification of a single tryptophan of the inorganic pyrophosphatase from thermophilic bacterium PS-3: possible involvement in its substrate binding. Biochim Biophys Acta. 1991 Apr 29;1077(3):281–284. doi: 10.1016/0167-4838(91)90541-7. [DOI] [PubMed] [Google Scholar]
- Kaneko S., Ichiba T., Hirano N., Hachimori A. Modification of tryptophan 149 of inorganic pyrophosphatase from Escherichia coli. Int J Biochem. 1993 Feb;25(2):233–238. doi: 10.1016/0020-711x(93)90011-3. [DOI] [PubMed] [Google Scholar]
- Kawasaki I., Adachi N., Ikeda H. Nucleotide sequence of S. pombe inorganic pyrophosphatase. Nucleic Acids Res. 1990 Oct 11;18(19):5888–5888. doi: 10.1093/nar/18.19.5888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kieber J. J., Signer E. R. Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thaliana. Plant Mol Biol. 1991 Feb;16(2):345–348. doi: 10.1007/BF00020567. [DOI] [PubMed] [Google Scholar]
- Knight W. B., Dunaway-Mariano D., Ransom S. C., Villafranca J. J. Investigations of the metal ion-binding sites of yeast inorganic pyrophosphatase. J Biol Chem. 1984 Mar 10;259(5):2886–2895. [PubMed] [Google Scholar]
- Kolakowski L. F., Jr, Schloesser M., Cooperman B. S. Cloning, molecular characterization and chromosome localization of the inorganic pyrophosphatase (PPA) gene from S. cerevisiae. Nucleic Acids Res. 1988 Nov 25;16(22):10441–10452. doi: 10.1093/nar/16.22.10441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komissarov A. A., Shpanchenko O. V., Skliankina V. A., Avaeva S. M. Funktsional'no vazhnyi ostatok lizina v neorganicheskoi pirofosfataze iz E. coli. I. Vzaimodeistvie neorganicheskoi pirofosfatazy s piridoksal'-5'-fosfatom. Bioorg Khim. 1987 May;13(5):592–598. [PubMed] [Google Scholar]
- Lahti R., Kolakowski L. F., Jr, Heinonen J., Vihinen M., Pohjanoksa K., Cooperman B. S. Conservation of functional residues between yeast and E. coli inorganic pyrophosphatases. Biochim Biophys Acta. 1990 May 8;1038(3):338–345. doi: 10.1016/0167-4838(90)90246-c. [DOI] [PubMed] [Google Scholar]
- Lahti R. Microbial inorganic pyrophosphatases. Microbiol Rev. 1983 Jun;47(2):169–178. doi: 10.1128/mr.47.2.169-178.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lahti R., Pohjanoksa K., Pitkäranta T., Heikinheimo P., Salminen T., Meyer P., Heinonen J. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Biochemistry. 1990 Jun 19;29(24):5761–5766. doi: 10.1021/bi00476a017. [DOI] [PubMed] [Google Scholar]
- Lahti R., Salminen T., Latonen S., Heikinheimo P., Pohjanoksa K., Heinonen J. Genetic engineering of Escherichia coli inorganic pyrophosphatase. Tyr55 and Tyr141 are important for the structural integrity. Eur J Biochem. 1991 Jun 1;198(2):293–297. doi: 10.1111/j.1432-1033.1991.tb16015.x. [DOI] [PubMed] [Google Scholar]
- Lundin M., Baltscheffsky H., Ronne H. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem. 1991 Jul 5;266(19):12168–12172. [PubMed] [Google Scholar]
- McLachlan A. D. Gene duplications in the structural evolution of chymotrypsin. J Mol Biol. 1979 Feb 15;128(1):49–79. doi: 10.1016/0022-2836(79)90308-5. [DOI] [PubMed] [Google Scholar]
- Murzin A. G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 1993 Mar;12(3):861–867. doi: 10.1002/j.1460-2075.1993.tb05726.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nazarova T. I., Fink N. Yu., Avaeva S. M. Phosphohistidine as the result of phosphate migration in phosphorylated inorganic pyrophosphatase from yeast. FEBS Lett. 1972 Feb 1;20(2):167–170. doi: 10.1016/0014-5793(72)80784-1. [DOI] [PubMed] [Google Scholar]
- Orengo C. A., Thornton J. M. Alpha plus beta folds revisited: some favoured motifs. Structure. 1993 Oct 15;1(2):105–120. doi: 10.1016/0969-2126(93)90026-d. [DOI] [PubMed] [Google Scholar]
- Prasad G. S., Earhart C. A., Murray D. L., Novick R. P., Schlievert P. M., Ohlendorf D. H. Structure of toxic shock syndrome toxin 1. Biochemistry. 1993 Dec 21;32(50):13761–13766. doi: 10.1021/bi00213a001. [DOI] [PubMed] [Google Scholar]
- Raznikov A. V., Sklyankina V. A., Avaeva S. M. Tyrosine-89 is important for enzymatic activity of S. cerevisiae inorganic pyrophosphatase. FEBS Lett. 1992 Aug 10;308(1):62–64. doi: 10.1016/0014-5793(92)81051-m. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Richter O. M., Schäfer G. Cloning and sequencing of the gene for the cytoplasmic inorganic pyrophosphatase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Eur J Biochem. 1992 Oct 1;209(1):351–355. doi: 10.1111/j.1432-1033.1992.tb17296.x. [DOI] [PubMed] [Google Scholar]
- Samejima T., Tamagawa Y., Kondo Y., Hachimori A., Kaji H., Takeda A., Shiroya Y. Chemical modifications of histidyl and tyrosyl residues of inorganic pyrophosphatase from Escherichia coli. J Biochem. 1988 May;103(5):766–772. doi: 10.1093/oxfordjournals.jbchem.a122344. [DOI] [PubMed] [Google Scholar]
- Schindelin H., Marahiel M. A., Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature. 1993 Jul 8;364(6433):164–168. doi: 10.1038/364164a0. [DOI] [PubMed] [Google Scholar]
- Schnuchel A., Wiltscheck R., Czisch M., Herrler M., Willimsky G., Graumann P., Marahiel M. A., Holak T. A. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature. 1993 Jul 8;364(6433):169–171. doi: 10.1038/364169a0. [DOI] [PubMed] [Google Scholar]
- Shestakov A. A., Baykov A. A., Avaeva S. M. Tightly bound pyrophosphate in Escherichia coli inorganic pyrophosphatase. FEBS Lett. 1990 Mar 26;262(2):194–196. doi: 10.1016/0014-5793(90)80187-n. [DOI] [PubMed] [Google Scholar]
- Shiroya Y., Samejima T. The specific modification of histidyl residues of inorganic pyrophosphatase from Bacillus stearothermophilus by photooxidation. J Biochem. 1985 Aug;98(2):333–339. doi: 10.1093/oxfordjournals.jbchem.a135286. [DOI] [PubMed] [Google Scholar]
- Stark M. J., Milner J. S. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast. 1989 Jan-Feb;5(1):35–50. doi: 10.1002/yea.320050106. [DOI] [PubMed] [Google Scholar]
- Welsh K. M., Jacobyansky A., Springs B., Cooperman B. S. Catalytic specificity of yeast inorganic pyrophosphatase for magnesium ion as cofactor. An analysis of divalent metal ion and solvent isotope effects on enzyme function. Biochemistry. 1983 Apr 26;22(9):2243–2248. doi: 10.1021/bi00278a029. [DOI] [PubMed] [Google Scholar]
- Wong S. C., Hall D. C., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 3. Molecular weight and physical properties of the enzyme and its subunits. J Biol Chem. 1970 Sep 10;245(17):4335–4345. [PubMed] [Google Scholar]
- Yang Z., Wensel T. G. Molecular cloning and functional expression of cDNA encoding a mammalian inorganic pyrophosphatase. J Biol Chem. 1992 Dec 5;267(34):24641–24647. [PubMed] [Google Scholar]
- Yano Y., Negi T., Irie M. Carboxamidomethylation of yeast inorganic pyrophosphatase. J Biochem. 1973 Jul;74(1):67–76. doi: 10.1093/oxfordjournals.jbchem.a130232. [DOI] [PubMed] [Google Scholar]