Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Jul;3(7):1074–1080. doi: 10.1002/pro.5560030710

UDP-glucose dehydrogenase from bovine liver: primary structure and relationship to other dehydrogenases.

J Hempel 1, J Perozich 1, H Romovacek 1, A Hinich 1, I Kuo 1, D S Feingold 1
PMCID: PMC2142896  PMID: 7920253

Abstract

The primary structure of bovine liver UDP-glucose dehydrogenase (UDPGDH), a hexameric, NAD(+)-linked enzyme, has been determined at the protein level. The 52-kDa subunits are composed of 468 amino acid residues, with a free N-terminus and a Ser/Asn microhetergeneity at one position. The sequence shares 29.6% positional identity with GDP-mannose dehydrogenase from Pseudomonas, confirming a similarity earlier noted between active site peptides. This degree of similarity is comparable to the 31.1% identity vs. the UDPGDH from type A Streptococcus. Database searching also revealed similarities to a hypothetical sequence from Salmonella typhimurium and to "UDP-N-acetyl-mannosaminuronic acid dehydrogenase" from Escherichia coli. Pairwise identities between bovine UDPGDH and each of these sequences were all in the range of approximately 26-34%. Multiple alignment of all 5 sequences indicates common ancestry for these 4-electron-transferring enzymes. There are 27 strictly conserved residues, including a cysteine residue at position 275, earlier identified by chemical modification as the expected catalytic residue of the second half-reaction (conversion of UDP-aldehydoglucose to UDP-glucuronic acid), and 2 lysine residues, at positions 219 and 338, one of which may be the expected catalytic residue for the first half-reaction (conversion of UDP-glucose to UDP-aldehydoglucose). A GXGXXG pattern characteristic of the coenzyme-binding fold is found at positions 11-16, close to the N-terminus as with "short-chain" alcohol dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (679.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  2. Daniels D. L., Plunkett G., 3rd, Burland V., Blattner F. R. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771–778. doi: 10.1126/science.1379743. [DOI] [PubMed] [Google Scholar]
  3. Dougherty B. A., van de Rijn I. Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity. J Biol Chem. 1993 Apr 5;268(10):7118–7124. [PubMed] [Google Scholar]
  4. Franzen J. S., Ashcom J., Marchetti P., Cardamone J. J., Jr, Feingold D. S. Induced versus pre-existing asymmetry models for the half-of-the-sites reactivity effect in bovine liver uridine diphosphoglucose dehydrogenase. Biochim Biophys Acta. 1980 Aug 7;614(2):242–255. doi: 10.1016/0005-2744(80)90214-4. [DOI] [PubMed] [Google Scholar]
  5. Franzen J. S., Ishman R., Feingold D. S. Half-of-the-sites reactivity of bovine liver uridine diphosphoglucose dehydrogenase toward iodoacetate and iodoacetamide. Biochemistry. 1976 Dec 14;15(25):5665–5671. doi: 10.1021/bi00670a036. [DOI] [PubMed] [Google Scholar]
  6. Franzen J. S., Marchetti P., Ishman R., Ashcom J. Half-sites oxidation of bovine liver uridine diphosphate glucose dehydrogenase. Biochem J. 1978 Aug 1;173(2):701–704. doi: 10.1042/bj1730701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gainey P. A., Pestell T. C., Phelps C. F. A study of the subunit structure and the thiol reactivity of bovine liver uridine diphosphate glucose dehydrogenase. Biochem J. 1972 Oct;129(4):821–830. doi: 10.1042/bj1290821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghosh D., Weeks C. M., Grochulski P., Duax W. L., Erman M., Rimsay R. L., Orr J. C. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10064–10068. doi: 10.1073/pnas.88.22.10064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gribskov M., Lüthy R., Eisenberg D. Profile analysis. Methods Enzymol. 1990;183:146–159. doi: 10.1016/0076-6879(90)83011-w. [DOI] [PubMed] [Google Scholar]
  10. Hempel J., Kaiser R., Jörnvall H. Mitochondrial aldehyde dehydrogenase from human liver. Primary structure, differences in relation to the cytosolic enzyme, and functional correlations. Eur J Biochem. 1985 Nov 15;153(1):13–28. doi: 10.1111/j.1432-1033.1985.tb09260.x. [DOI] [PubMed] [Google Scholar]
  11. Hempel J., Nicholas H., Lindahl R. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 1993 Nov;2(11):1890–1900. doi: 10.1002/pro.5560021111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinshelwood S., Stoker N. G. Cloning of mycobacterial histidine synthesis genes by complementation of a Mycobacterium smegmatis auxotroph. Mol Microbiol. 1992 Oct;6(19):2887–2895. doi: 10.1111/j.1365-2958.1992.tb01468.x. [DOI] [PubMed] [Google Scholar]
  13. Jaenicke R., Rudolph R., Feingold D. S. Dissociation and in vitro reconstitution of bovine liver uridine diphosphoglucose dehydrogenase. The paired subunit nature of the enzyme. Biochemistry. 1986 Nov 18;25(23):7283–7287. doi: 10.1021/bi00371a006. [DOI] [PubMed] [Google Scholar]
  14. Johnson M. S., Overington J. P. A structural basis for sequence comparisons. An evaluation of scoring methodologies. J Mol Biol. 1993 Oct 20;233(4):716–738. doi: 10.1006/jmbi.1993.1548. [DOI] [PubMed] [Google Scholar]
  15. Kawamura T., Ishimoto N., Ito E. Enzymatic synthesis of uridine diphosphate N-acetyl-D-mannosaminuronic acid. J Biol Chem. 1979 Sep 10;254(17):8457–8465. [PubMed] [Google Scholar]
  16. Kitson T. M., Hill J. P., Midwinter G. G. Identification of a catalytically essential nucleophilic residue in sheep liver cytoplasmic aldehyde dehydrogenase. Biochem J. 1991 Apr 1;275(Pt 1):207–210. doi: 10.1042/bj2750207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kitson T. M. The time course of the interaction of sheep liver cytoplasmic aldehyde dehydrogenase with 2,2'- and 4,4'-dithiodipyridine: a comparison with the action of disulfiram. Arch Biochem Biophys. 1984 Nov 1;234(2):487–496. doi: 10.1016/0003-9861(84)90296-0. [DOI] [PubMed] [Google Scholar]
  18. Landon Cleavage at aspartyl-prolyl bonds. Methods Enzymol. 1977;47:145–149. doi: 10.1016/0076-6879(77)47017-4. [DOI] [PubMed] [Google Scholar]
  19. Ordman A. B., Kirkwood S. Mechanism of action of uridine diphoglucose dehydrogenase. Evidence for an essential lysine residue at the active site. J Biol Chem. 1977 Feb 25;252(4):1320–1326. [PubMed] [Google Scholar]
  20. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Persson B., Krook M., Jörnvall H. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem. 1991 Sep 1;200(2):537–543. doi: 10.1111/j.1432-1033.1991.tb16215.x. [DOI] [PubMed] [Google Scholar]
  22. Pitsillides A. A., Wilkinson L. S., Mehdizadeh S., Bayliss M. T., Edwards J. C. Uridine diphosphoglucose dehydrogenase activity in normal and rheumatoid synovium: the description of a specialized synovial lining cell. Int J Exp Pathol. 1993 Feb;74(1):27–34. [PMC free article] [PubMed] [Google Scholar]
  23. Roychoudhury S., May T. B., Gill J. F., Singh S. K., Feingold D. S., Chakrabarty A. M. Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J Biol Chem. 1989 Jun 5;264(16):9380–9385. [PubMed] [Google Scholar]
  24. Teng H., Segura E., Grubmeyer C. Conserved cysteine residues of histidinol dehydrogenase are not involved in catalysis. Novel chemistry required for enzymatic aldehyde oxidation. J Biol Chem. 1993 Jul 5;268(19):14182–14188. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES