Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Aug;3(8):1305–1314. doi: 10.1002/pro.5560030817

Deuterium exchange of alpha-helices and beta-sheets as monitored by electrospray ionization mass spectrometry.

D S Wagner 1, L G Melton 1, Y Yan 1, B W Erickson 1, R J Anderegg 1
PMCID: PMC2142910  PMID: 7987225

Abstract

Deuterium exchange was monitored by electrospray ionization mass spectrometry (ESI-MS) to study the slowly exchanging (hydrogen bonded) peptide hydrogens of several alpha-helical peptides and beta-sheet proteins. Polypeptides were synthetically engineered to have mainly disordered, alpha-helical, or beta-sheet structure. For 3 isomeric 31-residue alpha-helical peptides, the number of slowly exchanging hydrogens as measured by ESI-MS in 50% CF3CD2OD (pD 9.5) provided estimates of their alpha-helicities (26%, 40%, 94%) that agreed well with the values (17%, 34%, 98%) measured by circular dichroic spectroscopy in the same nondeuterated solvent. For 3 betabellins containing a pair of beta-sheets and a related disordered peptide, their order of structural stability (12D > 12S > 14D > 14S) shown by their deuterium exchange rates in 10% CD3OD/0.5% CD3CO2D (pD 3.8) as measured by ESI-MS was the same as their order of structural stability to unfolding with increasing temperature or guanidinium chloride concentration as measured by circular dichroic spectroscopy in water. Compared to monitoring deuterium exchange by proton NMR spectrometry, monitoring deuterium exchange by ESI-MS requires much less sample (1-50 micrograms), much shorter analysis time (10-90 min), and no chemical quenching of the exchange reaction.

Full Text

The Full Text of this article is available as a PDF (974.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bycroft M., Matouschek A., Kellis J. T., Jr, Serrano L., Fersht A. R. Detection and characterization of a folding intermediate in barnase by NMR. Nature. 1990 Aug 2;346(6283):488–490. doi: 10.1038/346488a0. [DOI] [PubMed] [Google Scholar]
  2. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  4. Covey T. R., Bonner R. F., Shushan B. I., Henion J. The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. Rapid Commun Mass Spectrom. 1988 Nov;2(11):249–256. doi: 10.1002/rcm.1290021111. [DOI] [PubMed] [Google Scholar]
  5. Creighton T. E. Protein folding. Biochem J. 1990 Aug 15;270(1):1–16. doi: 10.1042/bj2700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Englander S. W., Downer N. W., Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972;41:903–924. doi: 10.1146/annurev.bi.41.070172.004351. [DOI] [PubMed] [Google Scholar]
  7. Englander S. W., Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–265. doi: 10.1146/annurev.bb.21.060192.001331. [DOI] [PubMed] [Google Scholar]
  8. Hodges R. S., Semchuk P. D., Taneja A. K., Kay C. M., Parker J. M., Mant C. T. Protein design using model synthetic peptides. Pept Res. 1988 Sep-Oct;1(1):19–30. [PubMed] [Google Scholar]
  9. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  10. Jeng M. F., Englander S. W., Elöve G. A., Wand A. J., Roder H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry. 1990 Nov 20;29(46):10433–10437. doi: 10.1021/bi00498a001. [DOI] [PubMed] [Google Scholar]
  11. Katta V., Chait B. T. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom. 1991 Apr;5(4):214–217. doi: 10.1002/rcm.1290050415. [DOI] [PubMed] [Google Scholar]
  12. Kim P. S., Baldwin R. L. Influence of charge on the rate of amide proton exchange. Biochemistry. 1982 Jan 5;21(1):1–5. doi: 10.1021/bi00530a001. [DOI] [PubMed] [Google Scholar]
  13. Matthew J. B., Richards F. M. The pH dependence of hydrogen exchange in proteins. J Biol Chem. 1983 Mar 10;258(5):3039–3044. [PubMed] [Google Scholar]
  14. Mayne L., Paterson Y., Cerasoli D., Englander S. W. Effect of antibody binding on protein motions studied by hydrogen-exchange labeling and two-dimensional NMR. Biochemistry. 1992 Nov 10;31(44):10678–10685. doi: 10.1021/bi00159a006. [DOI] [PubMed] [Google Scholar]
  15. Miranker A., Robinson C. V., Radford S. E., Aplin R. T., Dobson C. M. Detection of transient protein folding populations by mass spectrometry. Science. 1993 Nov 5;262(5135):896–900. doi: 10.1126/science.8235611. [DOI] [PubMed] [Google Scholar]
  16. Mirza U. A., Cohen S. L., Chait B. T. Heat-induced conformational changes in proteins studied by electrospray ionization mass spectrometry. Anal Chem. 1993 Jan 1;65(1):1–6. doi: 10.1021/ac00049a003. [DOI] [PubMed] [Google Scholar]
  17. Molday R. S., Englander S. W., Kallen R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry. 1972 Jan 18;11(2):150–158. doi: 10.1021/bi00752a003. [DOI] [PubMed] [Google Scholar]
  18. Paterson Y., Englander S. W., Roder H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science. 1990 Aug 17;249(4970):755–759. doi: 10.1126/science.1697101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richardson J. S., Richardson D. C., Tweedy N. B., Gernert K. M., Quinn T. P., Hecht M. H., Erickson B. W., Yan Y., McClain R. D., Donlan M. E. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992. Biophys J. 1992 Nov;63(5):1185–1209. [PMC free article] [PubMed] [Google Scholar]
  20. Roder H., Wagner G., Wüthrich K. Individual amide proton exchange rates in thermally unfolded basic pancreatic trypsin inhibitor. Biochemistry. 1985 Dec 3;24(25):7407–7411. doi: 10.1021/bi00346a056. [DOI] [PubMed] [Google Scholar]
  21. Rohl C. A., Scholtz J. M., York E. J., Stewart J. M., Baldwin R. L. Kinetics of amide proton exchange in helical peptides of varying chain lengths. Interpretation by the Lifson-Roig equation. Biochemistry. 1992 Feb 11;31(5):1263–1269. doi: 10.1021/bi00120a001. [DOI] [PubMed] [Google Scholar]
  22. Rosa J. J., Richards F. M. An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol. 1979 Sep 25;133(3):399–416. doi: 10.1016/0022-2836(79)90400-5. [DOI] [PubMed] [Google Scholar]
  23. Thévenon-Emeric G., Kozlowski J., Zhang Z., Smith D. L. Determination of amide hydrogen exchange rates in peptides by mass spectrometry. Anal Chem. 1992 Oct 15;64(20):2456–2458. doi: 10.1021/ac00044a027. [DOI] [PubMed] [Google Scholar]
  24. Wagner D. S., Anderegg R. J. Conformation of cytochrome c studied by deuterium exchange-electrospray ionization mass spectrometry. Anal Chem. 1994 Mar 1;66(5):706–711. doi: 10.1021/ac00077a020. [DOI] [PubMed] [Google Scholar]
  25. Wagner G., Wüthrich K. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol. 1982 Sep 15;160(2):343–361. doi: 10.1016/0022-2836(82)90180-2. [DOI] [PubMed] [Google Scholar]
  26. Woodward C. K., Hilton B. D. Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. Annu Rev Biophys Bioeng. 1979;8:99–127. doi: 10.1146/annurev.bb.08.060179.000531. [DOI] [PubMed] [Google Scholar]
  27. Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]
  28. Yan Y., Erickson B. W. Engineering of betabellin 14D: disulfide-induced folding of a beta-sheet protein. Protein Sci. 1994 Jul;3(7):1069–1073. doi: 10.1002/pro.5560030709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yan Y., Tropsha A., Hermans J., Erickson B. W. Free energies for refolding of the common beta turn into the inverse-common beta turn: simulation of the role of D/L chirality. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7898–7902. doi: 10.1073/pnas.90.16.7898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhang Z., Smith D. L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 1993 Apr;2(4):522–531. doi: 10.1002/pro.5560020404. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES