Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Aug;3(8):1329–1340. doi: 10.1002/pro.5560030819

The sequence of a subtilisin-type protease (aerolysin) from the hyperthermophilic archaeum Pyrobaculum aerophilum reveals sites important to thermostability.

P Völkl 1, P Markiewicz 1, K O Stetter 1, J H Miller 1
PMCID: PMC2142912  PMID: 7987227

Abstract

The hyperthermophilic archaeum Pyrobaculum aerophilum grows optimally at 100 degrees C and pH 7.0. Cell homogenates exhibit strong proteolytic activity within a temperature range of 80-130 degrees C. During an analysis of cDNA and genomic sequence tags, a genomic clone was recovered showing strong sequence homology to alkaline subtilisins of Bacillus sp. The total DNA sequence of the gene encoding the protease (named "aerolysin") was determined. Multiple sequence alignment with 15 different serine-type proteases showed greatest homology with subtilisins from gram-positive bacteria rather than archaeal or eukaryal serine proteases. Models of secondary and tertiary structure based on sequence alignments and the tertiary structures of subtilisin Carlsberg, BPN', thermitase, and protease K were generated for P. aerophilum subtilisin. This allowed identification of sites potentially contributing to the thermostability of the protein. One common transition put alanines at the beginning and end of surface alpha-helices. Aspartic acids were found at the N-terminus of several surface helices, possibly increasing stability by interacting with the helix dipole. Several of the substitutions in regions expected to form surface loops were adjacent to each other in the tertiary structure model.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Soares M. B., Kerlavage A. R., Fields C., Venter J. C. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet. 1993 Aug;4(4):373–380. doi: 10.1038/ng0893-373. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Argos P., Rossman M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. doi: 10.1021/bi00592a028. [DOI] [PubMed] [Google Scholar]
  4. Betzel C., Visanji M., Eschenburg S., Wilson K. S., Peters K., Fittkau S., Singh T. P., Genov N. Crystallization and preliminary X-ray analysis of subtilisin DY, a natural mutant of subtilisin Carlsberg. Arch Biochem Biophys. 1993 May;302(2):499–502. doi: 10.1006/abbi.1993.1245. [DOI] [PubMed] [Google Scholar]
  5. Burggraf S., Larsen N., Woese C. R., Stetter K. O. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2547–2550. doi: 10.1073/pnas.90.6.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen K., Arnold F. H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5618–5622. doi: 10.1073/pnas.90.12.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davail S., Feller G., Narinx E., Gerday C. Sequence of the subtilisin-encoding gene from an antarctic psychrotroph Bacillus TA41. Gene. 1992 Sep 21;119(1):143–144. doi: 10.1016/0378-1119(92)90080-9. [DOI] [PubMed] [Google Scholar]
  8. Egnell P., Flock J. I. The autocatalytic processing of the subtilisin Carlsberg pro-region is independent of the primary structure of the cleavage site. Mol Microbiol. 1992 May;6(9):1115–1119. doi: 10.1111/j.1365-2958.1992.tb01549.x. [DOI] [PubMed] [Google Scholar]
  9. Eijsink V. G., Vriend G., van den Burg B., van der Zee J. R., Venema G. Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the N-terminal turn of alpha-helices. Protein Eng. 1992 Mar;5(2):165–170. doi: 10.1093/protein/5.2.165. [DOI] [PubMed] [Google Scholar]
  10. Frömmel C., Sander C. Thermitase, a thermostable subtilisin: comparison of predicted and experimental structures and the molecular cause of thermostability. Proteins. 1989;5(1):22–37. doi: 10.1002/prot.340050105. [DOI] [PubMed] [Google Scholar]
  11. Gros P., Kalk K. H., Hol W. G. Calcium binding to thermitase. Crystallographic studies of thermitase at 0, 5, and 100 mM calcium. J Biol Chem. 1991 Feb 15;266(5):2953–2961. doi: 10.2210/pdb3tec/pdb. [DOI] [PubMed] [Google Scholar]
  12. Gunkel F. A., Gassen H. G. Proteinase K from Tritirachium album Limber. Characterization of the chromosomal gene and expression of the cDNA in Escherichia coli. Eur J Biochem. 1989 Jan 15;179(1):185–194. doi: 10.1111/j.1432-1033.1989.tb14539.x. [DOI] [PubMed] [Google Scholar]
  13. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  14. Kamekura M., Seno Y., Holmes M. L., Dyall-Smith M. L. Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J Bacteriol. 1992 Feb;174(3):736–742. doi: 10.1128/jb.174.3.736-742.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaneko R., Koyama N., Tsai Y. C., Juang R. Y., Yoda K., Yamasaki M. Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J Bacteriol. 1989 Sep;171(9):5232–5236. doi: 10.1128/jb.171.9.5232-5236.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim C. W., Markiewicz P., Lee J. J., Schierle C. F., Miller J. H. Studies of the hyperthermophile Thermotoga maritima by random sequencing of cDNA and genomic libraries. Identification and sequencing of the trpEG (D) operon. J Mol Biol. 1993 Jun 20;231(4):960–981. doi: 10.1006/jmbi.1993.1345. [DOI] [PubMed] [Google Scholar]
  17. Kraft R., Tardiff J., Krauter K. S., Leinwand L. A. Using mini-prep plasmid DNA for sequencing double stranded templates with Sequenase. Biotechniques. 1988 Jun;6(6):544-6, 549. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
  20. Mitchinson C., Wells J. A. Protein engineering of disulfide bonds in subtilisin BPN'. Biochemistry. 1989 May 30;28(11):4807–4815. doi: 10.1021/bi00437a043. [DOI] [PubMed] [Google Scholar]
  21. Narhi L. O., Stabinsky Y., Levitt M., Miller L., Sachdev R., Finley S., Park S., Kolvenbach C., Arakawa T., Zukowski M. Enhanced stability of subtilisin by three point mutations. Biotechnol Appl Biochem. 1991 Feb;13(1):12–24. [PubMed] [Google Scholar]
  22. Nicholson H., Becktel W. J., Matthews B. W. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651–656. doi: 10.1038/336651a0. [DOI] [PubMed] [Google Scholar]
  23. Pantoliano M. W., Whitlow M., Wood J. F., Dodd S. W., Hardman K. D., Rollence M. L., Bryan P. N. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry. 1989 Sep 5;28(18):7205–7213. doi: 10.1021/bi00444a012. [DOI] [PubMed] [Google Scholar]
  24. Pauptit R. A., Karlsson R., Picot D., Jenkins J. A., Niklaus-Reimer A. S., Jansonius J. N. Crystal structure of neutral protease from Bacillus cereus refined at 3.0 A resolution and comparison with the homologous but more thermostable enzyme thermolysin. J Mol Biol. 1988 Feb 5;199(3):525–537. doi: 10.1016/0022-2836(88)90623-7. [DOI] [PubMed] [Google Scholar]
  25. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  26. Rufo G. A., Jr, Sullivan B. J., Sloma A., Pero J. Isolation and characterization of a novel extracellular metalloprotease from Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):1019–1023. doi: 10.1128/jb.172.2.1019-1023.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sali D., Bycroft M., Fersht A. R. Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature. 1988 Oct 20;335(6192):740–743. doi: 10.1038/335740a0. [DOI] [PubMed] [Google Scholar]
  28. Siezen R. J., Bruinenberg P. G., Vos P., van Alen-Boerrigter I., Nijhuis M., Alting A. C., Exterkate F. A., de Vos W. M. Engineering of the substrate-binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis. Protein Eng. 1993 Nov;6(8):927–937. doi: 10.1093/protein/6.8.927. [DOI] [PubMed] [Google Scholar]
  29. Sloma A., Rufo G. A., Jr, Theriault K. A., Dwyer M., Wilson S. W., Pero J. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol. 1991 Nov;173(21):6889–6895. doi: 10.1128/jb.173.21.6889-6895.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stahl M. L., Ferrari E. Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation. J Bacteriol. 1984 May;158(2):411–418. doi: 10.1128/jb.158.2.411-418.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Teplyakov A. V., Kuranova I. P., Harutyunyan E. H., Vainshtein B. K., Frömmel C., Höhne W. E., Wilson K. S. Crystal structure of thermitase at 1.4 A resolution. J Mol Biol. 1990 Jul 5;214(1):261–279. doi: 10.1016/0022-2836(90)90160-n. [DOI] [PubMed] [Google Scholar]
  32. Terada I., Kwon S. T., Miyata Y., Matsuzawa H., Ohta T. Unique precursor structure of an extracellular protease, aqualysin I, with NH2- and COOH-terminal pro-sequences and its processing in Escherichia coli. J Biol Chem. 1990 Apr 25;265(12):6576–6581. [PubMed] [Google Scholar]
  33. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol. 1993 Sep;59(9):2918–2926. doi: 10.1128/aem.59.9.2918-2926.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wiech H., Klappa P., Zimmerman R. Protein export in prokaryotes and eukaryotes. Theme with variations. FEBS Lett. 1991 Jul 22;285(2):182–188. doi: 10.1016/0014-5793(91)80800-i. [DOI] [PubMed] [Google Scholar]
  35. van der Laan J. M., Teplyakov A. V., Kelders H., Kalk K. H., Misset O., Mulleners L. J., Dijkstra B. W. Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus. Protein Eng. 1992 Jul;5(5):405–411. doi: 10.1093/protein/5.5.405. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES