Abstract
Absorbance-detected thermal denaturation studies of the C102T variant of Saccharomyces cerevisiae iso-1-ferricytochrome c were performed between pH 3 and 5. Thermal denaturation in this pH range is reversible, shows no concentration dependence, and is consistent with a 2-state model. Values for free energy (delta GD), enthalpy (delta HD), and entropy (delta SD) of denaturation were determined as functions of pH and temperature. The value of delta GD at 300 K, pH 4.6, is 5.1 +/- 0.3 kcal mol-1. The change in molar heat capacity upon denaturation (delta Cp), determined by the temperature dependence of delta HD as a function of pH (1.37 +/- 0.06 kcal mol-1 K-1), agrees with the value determined by differential scanning calorimetry. pH-dependent changes in the Soret region indicate that a group or groups in the heme environment of the denatured protein, probably 1 or both heme propionates, ionize with a pK near 4. The C102T variant exhibits both enthalpy and entropy convergence with a delta HD of 1.30 kcal mol-1 residue-1 at 373.6 K and a delta SD of 4.24 cal mol-1 K-1 residue-1 at 385.2 K. These values agree with those for other single-domain, globular proteins.
Full Text
The Full Text of this article is available as a PDF (750.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Auld D. S., Pielak G. J. Constraints on amino acid substitutions in the N-terminal helix of cytochrome c explored by random mutagenesis. Biochemistry. 1991 Sep 3;30(35):8684–8690. doi: 10.1021/bi00099a028. [DOI] [PubMed] [Google Scholar]
- Auld D. S., Young G. B., Saunders A. J., Doyle D. F., Betz S. F., Pielak G. J. Probing weakly polar interactions in cytochrome c. Protein Sci. 1993 Dec;2(12):2187–2197. doi: 10.1002/pro.5560021218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin R. L. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8069–8072. doi: 10.1073/pnas.83.21.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berghuis A. M., Brayer G. D. Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol. 1992 Feb 20;223(4):959–976. doi: 10.1016/0022-2836(92)90255-i. [DOI] [PubMed] [Google Scholar]
- Betz S. F., Pielak G. J. Introduction of a disulfide bond into cytochrome c stabilizes a compact denatured state. Biochemistry. 1992 Dec 15;31(49):12337–12344. doi: 10.1021/bi00164a007. [DOI] [PubMed] [Google Scholar]
- Cohen J. S., Hayes M. B. Nuclear magnetic resonance titration curves of histidine ring protons. V. Comparative study of cytochrome c from three species and the assignment of individual proton resonances. J Biol Chem. 1974 Sep 10;249(17):5472–5477. [PubMed] [Google Scholar]
- Cutler R. L., Pielak G. J., Mauk A. G., Smith M. Replacement of cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c with threonine: improved stability of the mutant protein. Protein Eng. 1987 Feb-Mar;1(2):95–99. doi: 10.1093/protein/1.2.95. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
- Doig A. J., Williams D. H. Why water-soluble, compact, globular proteins have similar specific enthalpies of unfolding at 110 degrees C. Biochemistry. 1992 Oct 6;31(39):9371–9375. doi: 10.1021/bi00154a007. [DOI] [PubMed] [Google Scholar]
- Dumont M. D., Mathews A. J., Nall B. T., Baim S. B., Eustice D. C., Sherman F. Differential stability of two apo-isocytochromes c in the yeast Saccharomyces cerevisiae. J Biol Chem. 1990 Feb 15;265(5):2733–2739. [PubMed] [Google Scholar]
- Elwell M. L., Schellman J. A. Stability of phage T4 lysozymes. I. Native properties and thermal stability of wild type and two mutant lysozymes. Biochim Biophys Acta. 1977 Oct 26;494(2):367–383. doi: 10.1016/0005-2795(77)90166-0. [DOI] [PubMed] [Google Scholar]
- Fredericks Z. L., Pielak G. J. Exploring the interface between the N- and C-terminal helices of cytochrome c by random mutagenesis within the C-terminal helix. Biochemistry. 1993 Jan 26;32(3):929–936. doi: 10.1021/bi00054a026. [DOI] [PubMed] [Google Scholar]
- Fu L., Freire E. On the origin of the enthalpy and entropy convergence temperatures in protein folding. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9335–9338. doi: 10.1073/pnas.89.19.9335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao Y. A., Boyd J., Pielak G. J., Williams R. J. Comparison of reduced and oxidized yeast iso-1-cytochrome c using proton paramagnetic shifts. Biochemistry. 1991 Feb 19;30(7):1928–1934. doi: 10.1021/bi00221a028. [DOI] [PubMed] [Google Scholar]
- Gao Y., Boyd J., Williams R. J., Pielak G. J. Assignment of proton resonances, identification of secondary structural elements, and analysis of backbone chemical shifts for the C102T variant of yeast iso-1-cytochrome c and horse cytochrome c. Biochemistry. 1990 Jul 31;29(30):6994–7003. doi: 10.1021/bi00482a007. [DOI] [PubMed] [Google Scholar]
- Greene R. M., Betz S. F., Hilgen-Willis S., Auld D. S., Fencl J. B., Pielak G. J. Changes in global stability and local structure of cytochrome c upon substituting phenylalanine-82 with tyrosine. J Inorg Biochem. 1993 Aug 15;51(3):663–676. doi: 10.1016/0162-0134(93)85038-a. [DOI] [PubMed] [Google Scholar]
- Hilgen-Willis S., Bowden E. F., Pielak G. J. Dramatic stabilization of ferricytochrome c upon reduction. J Inorg Biochem. 1993 Aug 15;51(3):649–653. doi: 10.1016/0162-0134(93)85036-8. [DOI] [PubMed] [Google Scholar]
- Holzschu D., Principio L., Conklin K. T., Hickey D. R., Short J., Rao R., McLendon G., Sherman F. Replacement of the invariant lysine 77 by arginine in yeast iso-1-cytochrome c results in enhanced and normal activities in vitro and in vivo. J Biol Chem. 1987 May 25;262(15):7125–7131. [PubMed] [Google Scholar]
- Hutchison C. A., 3rd, Phillips S., Edgell M. H., Gillam S., Jahnke P., Smith M. Mutagenesis at a specific position in a DNA sequence. J Biol Chem. 1978 Sep 25;253(18):6551–6560. [PubMed] [Google Scholar]
- KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
- Koshy T. I., Luntz T. L., Plotkin B., Schejter A., Margoliash E. The significance of denaturant titrations of protein stability: a comparison of rat and baker's yeast cytochrome c and their site-directed asparagine-52-to-isoleucine mutants. Biochem J. 1994 Apr 15;299(Pt 2):347–350. doi: 10.1042/bj2990347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lumry R., Biltonen R. Validity of the "two-state" hypothesis for conformational transitions of proteins. Biopolymers. 1966 Sep;4(8):917–944. doi: 10.1002/bip.1966.360040808. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Kim K. S., Woodward C., Privalov P. L. Thermodynamics of BPTI folding. Protein Sci. 1993 Dec;2(12):2028–2036. doi: 10.1002/pro.5560021204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. J Mol Biol. 1993 Jul 20;232(2):639–659. doi: 10.1006/jmbi.1993.1416. [DOI] [PubMed] [Google Scholar]
- Marmorino J. L., Auld D. S., Betz S. F., Doyle D. F., Young G. B., Pielak G. J. Amide proton exchange rates of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochrome c. Protein Sci. 1993 Nov;2(11):1966–1974. doi: 10.1002/pro.5560021118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy K. P., Gill S. J. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991 Dec 5;222(3):699–709. doi: 10.1016/0022-2836(91)90506-2. [DOI] [PubMed] [Google Scholar]
- Pfeil W., Privalov P. L. Thermodynamic investigations of proteins. III. Thermodynamic description of lysozyme. Biophys Chem. 1976 Jan;4(1):41–50. doi: 10.1016/0301-4622(76)80005-1. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
- Smith M., Leung D. W., Gillam S., Astell C. R., Montgomery D. L., Hall B. D. Sequence of the gene for iso-1-cytochrome c in Saccharomyces cerevisiae. Cell. 1979 Apr;16(4):753–761. doi: 10.1016/0092-8674(79)90091-6. [DOI] [PubMed] [Google Scholar]
- White T. B., Berget P. B., Nall B. T. Changes in conformation and slow refolding kinetics in mutant iso-2-cytochrome c with replacement of a conserved proline residue. Biochemistry. 1987 Jul 14;26(14):4358–4366. doi: 10.1021/bi00388a026. [DOI] [PubMed] [Google Scholar]
- Willie A., McLean M., Liu R. Q., Hilgen-Willis S., Saunders A. J., Pielak G. J., Sligar S. G., Durham B., Millett F. Intracomplex electron transfer between ruthenium-65-cytochrome b5 and position-82 variants of yeast iso-1-cytochrome c. Biochemistry. 1993 Jul 27;32(29):7519–7525. doi: 10.1021/bi00080a025. [DOI] [PubMed] [Google Scholar]