Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Aug;3(8):1245–1252. doi: 10.1002/pro.5560030810

Reversible unfolding of fructose 6-phosphate, 2-kinase:fructose 2,6-bisphosphatase.

N Tominaga 1, D M Jameson 1, K Uyeda 1
PMCID: PMC2142919  PMID: 7987219

Abstract

Reversible unfolding of rat testis fructose 6-phosphate,2-kinase:fructose 2,6-bisphosphatase in guanidine hydrochloride was monitored by following enzyme activities as well as by fluorescence methodologies (intensity, emission maximum, polarization, and quenching), using both intrinsic (tryptophan) and extrinsic (5((2-(iodoacetyl)amino) ethyl)naphthalene-1-sulfonic acid) probes. The unfolding reaction is described minimally as a 4-state transition from folded dimer-->partially unfolded dimer-->monomer-->unfolded monomer. The partially unfolded dimer had a high phosphatase/kinase ratio due to preferential unfolding of the kinase domain. The renaturation reaction proceeded by very rapid conversion (less than 1 s) of unfolded monomer to dimer, devoid of any enzyme activity, followed by slow (over 60 min) formation of the active enzyme. The recovery rates of the kinase and the phosphatase were similar. Thus, the refolding appeared to be a reversal of the unfolding pathway involving different forms of the transient dimeric intermediates. Fluorescence quenching studies using iodide and acrylamide showed that the tryptophans, including Trp-15 in the N-terminal peptide, were only slightly accessible to iodide but were much more accessible to acrylamide. Fructose 6-phosphate, but not ATP or fructose 2,6-bisphosphate, diminished the iodide quenching, but all these ligands inhibited the acrylamide quenching by 25%. These results suggested that the N-terminal peptide (containing a tryptophan) was not exposed on the protein surface and may play an important role in shielding other tryptophans from solvent.

Full Text

The Full Text of this article is available as a PDF (818.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algaier J., Uyeda K. Molecular cloning, sequence analysis, and expression of a human liver cDNA coding for fructose-6-P,2-kinase:fructose-2,6-bisphosphatase. Biochem Biophys Res Commun. 1988 May 31;153(1):328–333. doi: 10.1016/s0006-291x(88)81226-9. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Creighton T. E. Protein folding. Biochem J. 1990 Aug 15;270(1):1–16. doi: 10.1042/bj2700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darville M. I., Crepin K. M., Vandekerckhove J., Van Damme J., Octave J. N., Rider M. H., Marchand M. J., Hue L., Rousseau G. G. Complete nucleotide sequence coding for rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase derived from a cDNA clone. FEBS Lett. 1987 Nov 30;224(2):317–321. doi: 10.1016/0014-5793(87)80476-3. [DOI] [PubMed] [Google Scholar]
  5. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  6. Furuya E., Yokoyama M., Uyeda K. Regulation of fructose-6-phosphate 2-kinase by phosphorylation and dephosphorylation: possible mechanism for coordinated control of glycolysis and glycogenolysis. Proc Natl Acad Sci U S A. 1982 Jan;79(2):325–329. doi: 10.1073/pnas.79.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kitamura K., Kangawa K., Matsuo H., Uyeda K. Phosphorylation of myocardial fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and protein kinase C. Activation by phosphorylation and amino acid sequences of the phosphorylation sites. J Biol Chem. 1988 Nov 15;263(32):16796–16801. [PubMed] [Google Scholar]
  8. Kitamura K., Uyeda K., Kangawa K., Matsuo H. Purification and characterization of rat skeletal muscle fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem. 1989 Jun 15;264(17):9799–9806. [PubMed] [Google Scholar]
  9. Kurland I. J., Li L., Lange A. J., Correia J. J., el-Maghrabi M. R., Pilkis S. J. Regulation of rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Role of the NH2-terminal region. J Biol Chem. 1993 Jul 5;268(19):14056–14064. [PubMed] [Google Scholar]
  10. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  11. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  12. Lively M. O., el-Maghrabi M. R., Pilkis J., D'Angelo G., Colosia A. D., Ciavola J. A., Fraser B. A., Pilkis S. J. Complete amino acid sequence of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. 1988 Jan 15;263(2):839–849. [PubMed] [Google Scholar]
  13. Tauler A., Rosenberg A. H., Colosia A., Studier F. W., Pilkis S. J. Expression of the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6642–6646. doi: 10.1073/pnas.85.18.6642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tominaga N., Minami Y., Sakakibara R., Uyeda K. Significance of the amino terminus of rat testis fructose-6-phosphate, 2-kinase:fructose-2,6-bisphosphatase. J Biol Chem. 1993 Jul 25;268(21):15951–15957. [PubMed] [Google Scholar]
  15. Uyeda K., Furuya E., Luby L. J. The effect of natural and synthetic D-fructose 2,6-bisphosphate on the regulatory kinetic properties of liver and muscle phosphofructokinases. J Biol Chem. 1981 Aug 25;256(16):8394–8399. [PubMed] [Google Scholar]
  16. Uyeda K., Miyatake A., Luby L. J., Richards E. G. Isolation and characterization of muscle phosphofructokinases with varying degrees of phosphorylation. J Biol Chem. 1978 Nov 25;253(22):8319–8327. [PubMed] [Google Scholar]
  17. Van Schaftingen E., Davies D. R., Hers H. G. Inactivation of phosphofructokinase 2 by cyclic AMP - dependent protein kinase. Biochem Biophys Res Commun. 1981 Nov 16;103(1):362–368. doi: 10.1016/0006-291x(81)91701-0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES