Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Aug;3(8):1296–1304. doi: 10.1002/pro.5560030816

Mouse liver NAD(P)H:quinone acceptor oxidoreductase: protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in Escherichia coli, and enzyme activity analysis.

S Chen 1, P E Clarke 1, P A Martino 1, P S Deng 1, C H Yeh 1, T D Lee 1, H J Prochaska 1, P Talalay 1
PMCID: PMC2142921  PMID: 7527260

Abstract

The amino acid sequence of mouse liver NAD(P)H:quinone acceptor oxidoreductase (EC 1.6.99.2) has been determined by tandem mass spectrometry and deduced from the nucleotide sequence of the cDNA encoding for the enzyme. The electrospray mass spectral analyses revealed, as previously reported (Prochaska HJ, Talalay P, 1986, J Biol Chem 261:1372-1378), that the 2 forms--the hydrophilic and hydrophobic forms--of the mouse liver quinone reductase have the same molecular weight. No amino acid sequence differences were found by tandem mass spectral analyses of tryptic peptides of the 2 forms. Moreover, the amino-termini of the mouse enzymes are acetylated as determined by tandem mass spectrometry. Further, only 1 cDNA species encoding for the quinone reductase was found. These results suggest that the 2 forms of the mouse quinone reductase have the same primary sequences, and that any difference between the 2 forms may be attributed to a labile posttranslational modification. Analysis of the mouse quinone reductase cDNA revealed that the enzyme is 273 amino acids long and has a sequence homologous to those of rat and human quinone reductases. In this study, the mouse quinone reductase cDNA was also ligated into a prokaryotic expression plasmid pKK233.2, and the constructed plasmid was used to transform Escherichia coli strain JM109. The E. coli-expressed mouse quinone reductase was purified and characterized. Although mouse quinone reductase has an amino acid sequence similar to those of the rat and human enzymes, the mouse enzyme has a higher NAD(P)H-menadione reductase activity and is less sensitive to flavones and dicoumarol, 2 known inhibitors of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayney R. M., Rodkey J. A., Bennett C. D., Lu A. Y., Pickett C. B. Rat liver NAD(P)H: quinone reductase nucleotide sequence analysis of a quinone reductase cDNA clone and prediction of the amino acid sequence of the corresponding protein. J Biol Chem. 1987 Jan 15;262(2):572–575. [PubMed] [Google Scholar]
  2. Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 1988 Oct;16(1-12):99–111. doi: 10.1002/bms.1200160119. [DOI] [PubMed] [Google Scholar]
  3. Chen H. H., Ma J. X., Forrest G. L., Deng P. S., Martino P. A., Lee T. D., Chen S. Expression of rat liver NAD(P)H:quinone-acceptor oxidoreductase in Escherichia coli and mutagenesis in vitro at Arg-177. Biochem J. 1992 Jun 15;284(Pt 3):855–860. doi: 10.1042/bj2840855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S., Hwang J., Deng P. S. Inhibition of NAD(P)H:quinone acceptor oxidoreductase by flavones: a structure-activity study. Arch Biochem Biophys. 1993 Apr;302(1):72–77. doi: 10.1006/abbi.1993.1182. [DOI] [PubMed] [Google Scholar]
  5. Davis M. T., Lee T. D. Analysis of peptide mixtures by capillary high performance liquid chromatography: a practical guide to small-scale separations. Protein Sci. 1992 Jul;1(7):935–944. doi: 10.1002/pro.5560010712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deng P. S., Zhao S. H., Iyanagi T., Chen S. A. Photodependent inhibition of rat liver NAD(P)H:quinone acceptor oxidoreductase by (A)-2-azido-NAD+ and (A)-8-azido-NAD. Biochemistry. 1991 Jul 16;30(28):6942–6948. doi: 10.1021/bi00242a019. [DOI] [PubMed] [Google Scholar]
  7. ERNSTER L., DANIELSON L., LJUNGGREN M. DT diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm, and properties. Biochim Biophys Acta. 1962 Apr 9;58:171–188. doi: 10.1016/0006-3002(62)90997-6. [DOI] [PubMed] [Google Scholar]
  8. Forrest G. L., Qian J., Ma J. X., Kaplan W. D., Akman S., Doroshow J., Chen S. A. Rat liver NAD(P)H:quinone oxidoreductase: cDNA expression and site-directed mutagenesis. Biochem Biophys Res Commun. 1990 Jun 29;169(3):1087–1093. doi: 10.1016/0006-291x(90)92006-l. [DOI] [PubMed] [Google Scholar]
  9. Haniu M., Yuan H., Chen S. A., Iyanagi T., Lee T. D., Shively J. E. Structure-function relationship of NAD(P)H:quinone reductase: characterization of NH2-terminal blocking group and essential tyrosine and lysine residues. Biochemistry. 1988 Sep 6;27(18):6877–6883. doi: 10.1021/bi00418a033. [DOI] [PubMed] [Google Scholar]
  10. Hollander P. M., Ernster L. Studies on the reaction mechanism of DT diaphorase. Action of dead-end inhibitors and effects of phospholipids. Arch Biochem Biophys. 1975 Aug;169(2):560–567. doi: 10.1016/0003-9861(75)90200-3. [DOI] [PubMed] [Google Scholar]
  11. Hosoda S., Nakamura W., Hayashi K. Properties and reaction mechanism of DT diaphorase from rat liver. J Biol Chem. 1974 Oct 25;249(20):6416–6423. [PubMed] [Google Scholar]
  12. Iyanagi T., Yamazaki I. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase). Biochim Biophys Acta. 1970 Sep 1;216(2):282–294. doi: 10.1016/0005-2728(70)90220-3. [DOI] [PubMed] [Google Scholar]
  13. Jaiswal A. K., Burnett P., Adesnik M., McBride O. W. Nucleotide and deduced amino acid sequence of a human cDNA (NQO2) corresponding to a second member of the NAD(P)H:quinone oxidoreductase gene family. Extensive polymorphism at the NQO2 gene locus on chromosome 6. Biochemistry. 1990 Feb 20;29(7):1899–1906. doi: 10.1021/bi00459a034. [DOI] [PubMed] [Google Scholar]
  14. Jaiswal A. K., McBride O. W., Adesnik M., Nebert D. W. Human dioxin-inducible cytosolic NAD(P)H:menadione oxidoreductase. cDNA sequence and localization of gene to chromosome 16. J Biol Chem. 1988 Sep 25;263(27):13572–13578. [PubMed] [Google Scholar]
  15. Lin A. J., Cosby L. A., Shansky C. W., Sartorelli A. C. Potential bioreductive alkylating agents. 1. Benzoquinone derivatives. J Med Chem. 1972 Dec;15(12):1247–1252. doi: 10.1021/jm00282a011. [DOI] [PubMed] [Google Scholar]
  16. Liu X. F., Liu M. L., Iyanagi T., Legesse K., Lee T. D., Chen S. A. Inhibition of rat liver NAD(P)H:quinone acceptor oxidoreductase (DT-diaphorase) by flavonoids isolated from the Chinese herb scutellariae radix (Huang Qin). Mol Pharmacol. 1990 Jun;37(6):911–915. [PubMed] [Google Scholar]
  17. Liu X. F., Yuan H., Haniu M., Iyanagi T., Shively J. E., Chen S. A. Reaction of rat liver DT-diaphorase (NAD(P)H:quinone acceptor reductase) with 5'-[p-(fluorosulfonyl)benzoyl]-adenosine. Mol Pharmacol. 1989 Jun;35(6):818–822. [PubMed] [Google Scholar]
  18. Ma Q., Cui K., Xiao F., Lu A. Y., Yang C. S. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. J Biol Chem. 1992 Nov 5;267(31):22298–22304. [PubMed] [Google Scholar]
  19. Prochaska H. J. Purification and crystallization of rat liver NAD(P)H:(quinone-acceptor) oxidoreductase by cibacron blue affinity chromatography: identification of a new and potent inhibitor. Arch Biochem Biophys. 1988 Dec;267(2):529–538. doi: 10.1016/0003-9861(88)90060-4. [DOI] [PubMed] [Google Scholar]
  20. Prochaska H. J., Talalay P. Purification and characterization of two isofunctional forms of NAD(P)H: quinone reductase from mouse liver. J Biol Chem. 1986 Jan 25;261(3):1372–1378. [PubMed] [Google Scholar]
  21. Robertson J. A., Chen H. C., Nebert D. W. NAD(P)H:menadione oxidoreductase. Novel purification of enzyme cDNA and complete amino acid sequence, and gene regulation. J Biol Chem. 1986 Nov 25;261(33):15794–15799. [PubMed] [Google Scholar]
  22. Segura-Aguilar J., Kaiser R., Lind C. Separation and characterization of isoforms of DT-diaphorase from rat liver cytosol. Biochim Biophys Acta. 1992 Mar 27;1120(1):33–42. doi: 10.1016/0167-4838(92)90421-9. [DOI] [PubMed] [Google Scholar]
  23. Sharkis D. H., Swenson R. P. Purification by cibacron blue F3GA dye affinity chromatography and comparison of NAD(P)H:quinone reductase (E.C.1.6.99.2) from rat liver cytosol and microsomes. Biochem Biophys Res Commun. 1989 Jun 15;161(2):434–441. doi: 10.1016/0006-291x(89)92617-x. [DOI] [PubMed] [Google Scholar]
  24. Siegel D., Gibson N. W., Preusch P. C., Ross D. Metabolism of diaziquone by NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase): role in diaziquone-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res. 1990 Nov 15;50(22):7293–7300. [PubMed] [Google Scholar]
  25. Thaete L. G., Siegel D., Malkinson A. M., Forrest G. L., Ross D. NAD(P)H:quinone oxidoreductase (DT-diaphorase) activity and mRNA content in normal and neoplastic mouse lung epithelia. Int J Cancer. 1991 Aug 19;49(1):145–149. doi: 10.1002/ijc.2910490126. [DOI] [PubMed] [Google Scholar]
  26. Wallin R., Gebhardt O., Prydz H. NAD(P)H dehydrogenase and its role in the vitamin K (2-methyl-3-phytyl-1,4-naphthaquinone)-dependent carboxylation reaction. Biochem J. 1978 Jan 1;169(1):95–101. doi: 10.1042/bj1690095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walton M. I., Smith P. J., Workman P. The role of NAD(P)H: quinone reductase (EC 1.6.99.2, DT-diaphorase) in the reductive bioactivation of the novel indoloquinone antitumor agent EO9. Cancer Commun. 1991 Jul;3(7):199–206. doi: 10.3727/095535491820873164. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES