Abstract
A recombinant double mutant of hemoglobin (Hb), E6V/L88A(beta), was constructed to study the strength of the primary hydrophobic interaction in the gelation of sickle Hb, i.e., that between the mutant Val-6(beta) of one tetramer and the hydrophobic region between Phe-85(beta) and Leu-88(beta) on an adjacent tetramer. Thus, a construct encoding the donor Val-6(beta) of the expressed recombinant HbS and a second mutation encoding an Ala in place of Leu-88(beta) was assembled. The doubly mutated beta-globin gene was expressed in yeast together with the normal human alpha-chain, which is on the same plasmid, to produce a soluble Hb tetramer. Characterizations of the Hb double mutant by mass spectrometry, by HPLC, and by peptide mapping of tryptic digests of the mutant beta-chain were consistent with the desired mutations. The absorption spectra in the visible and the ultraviolet regions were practically superimposable for the recombinant Hb and the natural Hb purified from human red cells. Circular dichroism studies on the overall structure of the recombinant Hb double mutant and the recombinant single mutant, HbS, showed that both were correctly folded. Functional studies on the recombinant double mutant indicated that it was fully cooperative. However, its gelation concentration was significantly higher than that of either recombinant or natural sickle Hb, indicating that the strength of the interaction in this important donor-acceptor region in sickle Hb was considerably reduced even with such a conservative hydrophobic mutation.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi K., Kim J. Y., Konitzer P., Asakura T., Saviola B., Surrey S. Effects of beta 6 amino acid hydrophobicity on stability and solubility of hemoglobin tetramers. FEBS Lett. 1993 Jan 2;315(1):47–50. doi: 10.1016/0014-5793(93)81130-r. [DOI] [PubMed] [Google Scholar]
- Adachi K., Konitzer P., Lai C. H., Kim J., Surrey S. Oxygen binding and other physical properties of human hemoglobin made in yeast. Protein Eng. 1992 Dec;5(8):807–810. doi: 10.1093/protein/5.8.807. [DOI] [PubMed] [Google Scholar]
- Beavis R. C., Chait B. T. Factors affecting the ultraviolet laser desorption of proteins. Rapid Commun Mass Spectrom. 1989 Jul;3(7):233–237. doi: 10.1002/rcm.1290030708. [DOI] [PubMed] [Google Scholar]
- Benesch R. E., Edalji R., Kwong S., Benesch R. Oxygen affinity as an index of hemoglobin S polymerization: a new micromethod. Anal Biochem. 1978 Aug 15;89(1):162–173. doi: 10.1016/0003-2697(78)90737-6. [DOI] [PubMed] [Google Scholar]
- Bihoreau M. T., Baudin V., Marden M., Lacaze N., Bohn B., Kister J., Schaad O., Dumoulin A., Edelstein S. J., Poyart C. Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins. Protein Sci. 1992 Jan;1(1):145–150. doi: 10.1002/pro.5560010114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
- Cerami A., Manning J. M. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1180–1183. doi: 10.1073/pnas.68.6.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coghlan D., Jones G., Denton K. A., Wilson M. T., Chan B., Harris R., Woodrow J. R., Ogden J. E. Structural and functional characterisation of recombinant human haemoglobin A expressed in Saccharomyces cerevisiae. Eur J Biochem. 1992 Aug 1;207(3):931–936. doi: 10.1111/j.1432-1033.1992.tb17126.x. [DOI] [PubMed] [Google Scholar]
- Dean J., Schechter A. N. Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (third of three parts). N Engl J Med. 1978 Oct 19;299(16):863–870. doi: 10.1056/NEJM197810192991605. [DOI] [PubMed] [Google Scholar]
- Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
- Edelstein S. J., Crepeau R. H. Oblique alignment of hemoglobin S fibers in sickled cells. J Mol Biol. 1979 Nov 15;134(4):851–855. doi: 10.1016/0022-2836(79)90491-1. [DOI] [PubMed] [Google Scholar]
- Fasman G. D., Foster R. J., Beychok S. The conformational transition associated with the activation of chymotrypsinogen to chymotrypsin. J Mol Biol. 1966 Aug;19(2):240–253. doi: 10.1016/s0022-2836(66)80002-5. [DOI] [PubMed] [Google Scholar]
- Hofrichter J., Ross P. D., Eaton W. A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4864–4868. doi: 10.1073/pnas.71.12.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- INGRAM V. M. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956 Oct 13;178(4537):792–794. doi: 10.1038/178792a0. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Looker D., Abbott-Brown D., Cozart P., Durfee S., Hoffman S., Mathews A. J., Miller-Roehrich J., Shoemaker S., Trimble S., Fermi G. A human recombinant haemoglobin designed for use as a blood substitute. Nature. 1992 Mar 19;356(6366):258–260. doi: 10.1038/356258a0. [DOI] [PubMed] [Google Scholar]
- Manning J. M. Covalent inhibitors of the gelation of sickle cell hemoglobin and their effects on function. Adv Enzymol Relat Areas Mol Biol. 1991;64:55–91. doi: 10.1002/9780470123102.ch2. [DOI] [PubMed] [Google Scholar]
- Manning J. M. Preparation of hemoglobin carbamylated at specific NH2-terminal residues. Methods Enzymol. 1981;76:159–167. doi: 10.1016/0076-6879(81)76124-x. [DOI] [PubMed] [Google Scholar]
- Martin de Llano J. J., Jones W., Schneider K., Chait B. T., Manning J. M., Rodgers G., Benjamin L. J., Weksler B. Biochemical and functional properties of recombinant human sickle hemoglobin expressed in yeast. J Biol Chem. 1993 Dec 25;268(36):27004–27011. [PubMed] [Google Scholar]
- Nagai K., Perutz M. F., Poyart C. Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7252–7255. doi: 10.1073/pnas.82.21.7252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogden J. E., Harris R., Wilson M. T. Production of recombinant human hemoglobin A in Saccharomyces cerevisiae. Methods Enzymol. 1994;231:374–390. doi: 10.1016/0076-6879(94)31026-2. [DOI] [PubMed] [Google Scholar]
- PAULING L., ITANO H. A. Sickle cell anemia a molecular disease. Science. 1949 Nov 25;110(2865):543–548. doi: 10.1126/science.110.2865.543. [DOI] [PubMed] [Google Scholar]
- Shen T. J., Ho N. T., Simplaceanu V., Zou M., Green B. N., Tam M. F., Ho C. Production of unmodified human adult hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8108–8112. doi: 10.1073/pnas.90.17.8108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallone B., Vecchini P., Cavalli V., Brunori M. Site-directed mutagenesis in hemoglobin. Effect of some mutations at protein interfaces. FEBS Lett. 1993 Jun 14;324(2):117–122. doi: 10.1016/0014-5793(93)81375-a. [DOI] [PubMed] [Google Scholar]
- Wellems T. E., Josephs R. Crystallization of deoxyhemoglobin S by fiber alignment and fusion. J Mol Biol. 1979 Dec 15;135(3):651–674. doi: 10.1016/0022-2836(79)90170-0. [DOI] [PubMed] [Google Scholar]
- Wishner B. C., Ward K. B., Lattman E. E., Love W. E. Crystal structure of sickle-cell deoxyhemoglobin at 5 A resolution. J Mol Biol. 1975 Oct 15;98(1):179–194. doi: 10.1016/s0022-2836(75)80108-2. [DOI] [PubMed] [Google Scholar]