Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Aug;3(8):1224–1235. doi: 10.1002/pro.5560030808

Buried waters and internal cavities in monomeric proteins.

M A Williams 1, J M Goodfellow 1, J M Thornton 1
PMCID: PMC2142929  PMID: 7987217

Abstract

We have analyzed the buried water molecules and internal cavities in a set of 75 high-resolution, nonhomologous, monomeric protein structures. The number of hydrogen bonds formed between each water molecule and the protein varies from 0 to 4, with 3 being most common. Nearly half of the water molecules are found in pairs or larger clusters. Approximately 90% are shown to be associated with large cavities within the protein, as determined by a novel program, PRO_ACT. The total volume of a protein's large cavities is proportional to its molecular weight and is not dependent on structural class. The largest cavities in proteins are generally elongated rather than globular. There are many more empty cavities than hydrated cavities. The likelihood of a cavity being occupied by a water molecule increases with cavity size and the number of available hydrogen bond partners, with each additional partner typically stabilizing the occupied state by 0.6 kcal/mol.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Connolly M. L. Atomic size packing defects in proteins. Int J Pept Protein Res. 1986 Oct;28(4):360–363. doi: 10.1111/j.1399-3011.1986.tb03266.x. [DOI] [PubMed] [Google Scholar]
  4. Edsall J. T., McKenzie H. A. Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties. Adv Biophys. 1983;16:53–183. doi: 10.1016/0065-227x(83)90008-4. [DOI] [PubMed] [Google Scholar]
  5. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  6. Finney J. L. The organization and function of water in protein crystals. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 29;278(959):3–32. doi: 10.1098/rstb.1977.0029. [DOI] [PubMed] [Google Scholar]
  7. Hubbard S. J., Gross K. H., Argos P. Intramolecular cavities in globular proteins. Protein Eng. 1994 May;7(5):613–626. doi: 10.1093/protein/7.5.613. [DOI] [PubMed] [Google Scholar]
  8. Janin J. Surface and inside volumes in globular proteins. Nature. 1979 Feb 8;277(5696):491–492. doi: 10.1038/277491a0. [DOI] [PubMed] [Google Scholar]
  9. Kamphuis I. G., Kalk K. H., Swarte M. B., Drenth J. Structure of papain refined at 1.65 A resolution. J Mol Biol. 1984 Oct 25;179(2):233–256. doi: 10.1016/0022-2836(84)90467-4. [DOI] [PubMed] [Google Scholar]
  10. Lauble H., Kennedy M. C., Beinert H., Stout C. D. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry. 1992 Mar 17;31(10):2735–2748. doi: 10.1021/bi00125a014. [DOI] [PubMed] [Google Scholar]
  11. Lee B. Estimation of the maximum change in stability of globular proteins upon mutation of a hydrophobic residue to another of smaller size. Protein Sci. 1993 May;2(5):733–738. doi: 10.1002/pro.5560020505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  13. Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
  14. Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sreenivasan U., Axelsen P. H. Buried water in homologous serine proteases. Biochemistry. 1992 Dec 29;31(51):12785–12791. doi: 10.1021/bi00166a011. [DOI] [PubMed] [Google Scholar]
  16. Thanki N., Thornton J. M., Goodfellow J. M. Distributions of water around amino acid residues in proteins. J Mol Biol. 1988 Aug 5;202(3):637–657. doi: 10.1016/0022-2836(88)90292-6. [DOI] [PubMed] [Google Scholar]
  17. Thanki N., Thornton J. M., Goodfellow J. M. Influence of secondary structure on the hydration of serine, threonine and tyrosine residues in proteins. Protein Eng. 1990 May;3(6):495–508. doi: 10.1093/protein/3.6.495. [DOI] [PubMed] [Google Scholar]
  18. Tilton R. F., Jr, Kuntz I. D., Jr, Petsko G. A. Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A. Biochemistry. 1984 Jun 19;23(13):2849–2857. doi: 10.1021/bi00308a002. [DOI] [PubMed] [Google Scholar]
  19. Tilton R. F., Jr, Singh U. C., Weiner S. J., Connolly M. L., Kuntz I. D., Jr, Kollman P. A., Max N., Case D. A. Computational studies of the interaction of myoglobin and xenon. J Mol Biol. 1986 Nov 20;192(2):443–456. doi: 10.1016/0022-2836(86)90374-8. [DOI] [PubMed] [Google Scholar]
  20. Vrielink A., Lloyd L. F., Blow D. M. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. J Mol Biol. 1991 Jun 5;219(3):533–554. doi: 10.1016/0022-2836(91)90192-9. [DOI] [PubMed] [Google Scholar]
  21. Walshaw J., Goodfellow J. M. Distribution of solvent molecules around apolar side-chains in protein crystals. J Mol Biol. 1993 May 20;231(2):392–414. doi: 10.1006/jmbi.1993.1290. [DOI] [PubMed] [Google Scholar]
  22. Wright C. S. 2.2 A resolution structure analysis of two refined N-acetylneuraminyl-lactose--wheat germ agglutinin isolectin complexes. J Mol Biol. 1990 Oct 20;215(4):635–651. doi: 10.1016/S0022-2836(05)80174-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES