Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Sep;3(9):1430–1435. doi: 10.1002/pro.5560030909

Stabilization of myoglobin by multiple alanine substitutions in helical positions.

L Lin 1, R J Pinker 1, G N Phillips 1, N R Kallenbach 1
PMCID: PMC2142936  PMID: 7833805

Abstract

We have carried out a series of multiple Xaa-->Ala changes at nonadjacent surface positions in the sequence of sperm whale myoglobin. Although the corresponding single substitutions do not increase the thermal stability of the protein, multiple substitutions enhance the stability of the resulting myoglobins. The effect observed is an increase in the observed Tm (midpoint unfolding temperature) relative to that predicted from assuming additivity of the free energy changes corresponding to single mutations. The stabilization occurs in the presence of urea, as measured by the dependence of the unfolding temperature on urea concentration. The sites that have been altered occur in different helices and are not close in sequence or in the native structure of myoglobin. The observed effect is consistent with a role of multiple alanines in residual interactions in the unfolded state of the mutant proteins.

Full Text

The Full Text of this article is available as a PDF (605.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acampora G., Hermans J., Jr Reversible denaturation of sperm whale myoglobin. I. Dependence on temperature, pH, and composition. J Am Chem Soc. 1967 Mar 29;89(7):1543–1547. doi: 10.1021/ja00983a001. [DOI] [PubMed] [Google Scholar]
  2. Amir D., Krausz S., Haas E. Detection of local structures in reduced unfolded bovine pancreatic trypsin inhibitor. Proteins. 1992 Apr;13(2):162–173. doi: 10.1002/prot.340130210. [DOI] [PubMed] [Google Scholar]
  3. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  4. Cho K. C., Poon H. T., Choy C. L. The thermodynamics of myoglobin stability. Effects of axial ligand. Biochim Biophys Acta. 1982 Feb 18;701(2):206–215. doi: 10.1016/0167-4838(82)90115-7. [DOI] [PubMed] [Google Scholar]
  5. Chothia C. Principles that determine the structure of proteins. Annu Rev Biochem. 1984;53:537–572. doi: 10.1146/annurev.bi.53.070184.002541. [DOI] [PubMed] [Google Scholar]
  6. Green S. M., Meeker A. K., Shortle D. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state. Biochemistry. 1992 Jun 30;31(25):5717–5728. doi: 10.1021/bi00140a005. [DOI] [PubMed] [Google Scholar]
  7. Green S. M., Shortle D. Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease. Biochemistry. 1993 Sep 28;32(38):10131–10139. doi: 10.1021/bi00089a032. [DOI] [PubMed] [Google Scholar]
  8. Gregoret L. M., Sauer R. T. Additivity of mutant effects assessed by binomial mutagenesis. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4246–4250. doi: 10.1073/pnas.90.9.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horovitz A., Fersht A. R. Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. J Mol Biol. 1990 Aug 5;214(3):613–617. doi: 10.1016/0022-2836(90)90275-Q. [DOI] [PubMed] [Google Scholar]
  10. Horovitz A., Matthews J. M., Fersht A. R. Alpha-helix stability in proteins. II. Factors that influence stability at an internal position. J Mol Biol. 1992 Sep 20;227(2):560–568. doi: 10.1016/0022-2836(92)90907-2. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin L., Pinker R. J., Kallenbach N. R. Alpha-helix stability and the native state of myoglobin. Biochemistry. 1993 Nov 30;32(47):12638–12643. doi: 10.1021/bi00210a011. [DOI] [PubMed] [Google Scholar]
  13. Lyu P. C., Liff M. I., Marky L. A., Kallenbach N. R. Side chain contributions to the stability of alpha-helical structure in peptides. Science. 1990 Nov 2;250(4981):669–673. doi: 10.1126/science.2237416. [DOI] [PubMed] [Google Scholar]
  14. Makhatadze G. I., Privalov P. L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol. 1992 Jul 20;226(2):491–505. doi: 10.1016/0022-2836(92)90963-k. [DOI] [PubMed] [Google Scholar]
  15. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  16. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  17. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  18. Pace C. N., Vanderburg K. E. Determining globular protein stability: guanidine hydrochloride denaturation of myoglobin. Biochemistry. 1979 Jan 23;18(2):288–292. doi: 10.1021/bi00569a008. [DOI] [PubMed] [Google Scholar]
  19. Padmanabhan S., Marqusee S., Ridgeway T., Laue T. M., Baldwin R. L. Relative helix-forming tendencies of nonpolar amino acids. Nature. 1990 Mar 15;344(6263):268–270. doi: 10.1038/344268a0. [DOI] [PubMed] [Google Scholar]
  20. Pinker R. J., Lin L., Rose G. D., Kallenbach N. R. Effects of alanine substitutions in alpha-helices of sperm whale myoglobin on protein stability. Protein Sci. 1993 Jul;2(7):1099–1105. doi: 10.1002/pro.5560020704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  22. Puett D. The equilibrium unfolding parameters of horse and sperm whale myoglobin. Effects of guanidine hydrochloride, urea, and acid. J Biol Chem. 1973 Jul 10;248(13):4623–4634. [PubMed] [Google Scholar]
  23. Sandberg W. S., Terwilliger T. C. Engineering multiple properties of a protein by combinatorial mutagenesis. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8367–8371. doi: 10.1073/pnas.90.18.8367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Santoro M. M., Bolen D. W. A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry. 1992 May 26;31(20):4901–4907. doi: 10.1021/bi00135a022. [DOI] [PubMed] [Google Scholar]
  26. Shortle D., Meeker A. K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins. 1986 Sep;1(1):81–89. doi: 10.1002/prot.340010113. [DOI] [PubMed] [Google Scholar]
  27. Shortle D., Meeker A. K. Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry. 1989 Feb 7;28(3):936–944. doi: 10.1021/bi00429a003. [DOI] [PubMed] [Google Scholar]
  28. Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]
  29. Springer B. A., Sligar S. G. High-level expression of sperm whale myoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8961–8965. doi: 10.1073/pnas.84.24.8961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Staniforth R. A., Burston S. G., Smith C. J., Jackson G. S., Badcoe I. G., Atkinson T., Holbrook J. J., Clarke A. R. The energetics and cooperativity of protein folding: a simple experimental analysis based upon the solvation of internal residues. Biochemistry. 1993 Apr 20;32(15):3842–3851. doi: 10.1021/bi00066a003. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES