Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Sep;3(9):1383–1391. doi: 10.1002/pro.5560030904

Subunit interface mutants of rabbit muscle aldolase form active dimers.

P T Beernink 1, D R Tolan 1
PMCID: PMC2142937  PMID: 7833800

Abstract

We report the construction of subunit interface mutants of rabbit muscle aldolase A with altered quaternary structure. A mutation has been described that causes nonspherocytic hemolytic anemia and produces a thermolabile aldolase (Kishi H et al., 1987, Proc Natl Acad Sci USA 84:8623-8627). The disease arises from substitution of Gly for Asp-128, a residue at the subunit interface of human aldolase A. To elucidate the role of this residue in the highly homologous rabbit aldolase A, site-directed mutagenesis is used to replace Asp-128 with Gly, Ala, Asn, Gln, or Val. Rabbit aldolase D128G purified from Escherichia coli is found to be similar to human D128G by kinetic analysis, CD, and thermal inactivation assays. All of the mutant rabbit aldolases are similar to the wild-type rabbit enzyme in secondary structure and kinetic properties. In contrast, whereas the wild-type enzyme is a tetramer, chemical crosslinking and gel filtration indicate that a new dimeric species exists for the mutants. In sedimentation velocity experiments, the mutant enzymes as mixtures of dimer and tetramer at 4 degrees C. Sedimentation at 20 degrees C shows that the mutant enzymes are > 99.5% dimeric and, in the presence of substrate, that the dimeric species is active. Differential scanning calorimetry demonstrates that Tm values of the mutant enzymes are decreased by 12 degrees C compared to wild-type enzyme. The results indicate that Asp-128 is important for interface stability and suggest that 1 role of the quaternary structure of aldolase is to provide thermostability.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin S. A., Perham R. N. Novel kinetic and structural properties of the class-I D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes' strain). Biochem J. 1978 Mar 1;169(3):643–652. doi: 10.1042/bj1690643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin S. A., Perham R. N., Stribling D. Purification and characterization of the class-II D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes' strain). Biochem J. 1978 Mar 1;169(3):633–641. doi: 10.1042/bj1690633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berthiaume L., Tolan D. R., Sygusch J. Differential usage of the carboxyl-terminal region among aldolase isozymes. J Biol Chem. 1993 May 25;268(15):10826–10835. [PubMed] [Google Scholar]
  4. Chan W. W. Matrix-bound protein subunits. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1198–1204. doi: 10.1016/0006-291x(70)90213-5. [DOI] [PubMed] [Google Scholar]
  5. Chan W. W., Mort J. S., Chong D. K., Macdonald P. D. Studies on protein subunits. 3. Kinetic evidence for the presence of active subunits during the renaturation of muscle aldolase. J Biol Chem. 1973 Apr 25;248(8):2778–2784. [PubMed] [Google Scholar]
  6. DISCHE Z., LANDSBERG E. A colorimetric procedure for the determination of triose phosphate and fructose-1,6-diphosphate in presence of other sugars. Biochim Biophys Acta. 1960 Mar 25;39:144–147. doi: 10.1016/0006-3002(60)90130-x. [DOI] [PubMed] [Google Scholar]
  7. Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehrig T., Muhoberac B. B., Brems D., Bosron W. F. Monomers of human beta 1 beta 1 alcohol dehydrogenase exhibit activity that differs from the dimer. J Biol Chem. 1993 Jun 5;268(16):11721–11726. [PubMed] [Google Scholar]
  9. Hecht M. H., Sturtevant J. M., Sauer R. T. Stabilization of lambda repressor against thermal denaturation by site-directed Gly----Ala changes in alpha-helix 3. Proteins. 1986 Sep;1(1):43–46. doi: 10.1002/prot.340010108. [DOI] [PubMed] [Google Scholar]
  10. Iglesias A. A., Andreo C. S. NADP-dependent malate dehydrogenase (decarboxylating) from sugar cane leaves. Kinetic properties of different oligomeric structures. Eur J Biochem. 1990 Sep 24;192(3):729–733. doi: 10.1111/j.1432-1033.1990.tb19283.x. [DOI] [PubMed] [Google Scholar]
  11. KELLER P. J., LOWRY C., TAYLOR J. F. The molecular weights of some crystalline enzymes from muscle and yeast. II. Phosphoglucomutase. Biochim Biophys Acta. 1956 Apr;20(1):115–117. [PubMed] [Google Scholar]
  12. Kishi H., Mukai T., Hirono A., Fujii H., Miwa S., Hori K. Human aldolase A deficiency associated with a hemolytic anemia: thermolabile aldolase due to a single base mutation. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8623–8627. doi: 10.1073/pnas.84.23.8623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lebherz H. G. Evidence for the lack of subunit exchange between aldolase tetramers in vivo. J Biol Chem. 1975 Sep 25;250(18):7388–7391. [PubMed] [Google Scholar]
  14. Lebherz H. G., Rutter W. J. Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry. 1969 Jan;8(1):109–121. doi: 10.1021/bi00829a016. [DOI] [PubMed] [Google Scholar]
  15. Lebherz H. G. Stability of quaternary structure of mammalian and avian fructose diphosphate aldolases. Biochemistry. 1972 Jun 6;11(12):2243–2250. doi: 10.1021/bi00762a006. [DOI] [PubMed] [Google Scholar]
  16. Lusty C. J. Catalytically active monomer and dimer forms of rat liver carbamoyl-phosphate synthetase. Biochemistry. 1981 Jun 23;20(13):3665–3674. doi: 10.1021/bi00516a001. [DOI] [PubMed] [Google Scholar]
  17. Morris A. J., Tolan D. R. Site-directed mutagenesis identifies aspartate 33 as a previously unidentified critical residue in the catalytic mechanism of rabbit aldolase A. J Biol Chem. 1993 Jan 15;268(2):1095–1100. [PubMed] [Google Scholar]
  18. Penhoet E. E., Kochman M., Rutter W. J. Ioslation of fructose diphosphate aldolases A, B, and C. Biochemistry. 1969 Nov;8(11):4391–4395. doi: 10.1021/bi00839a025. [DOI] [PubMed] [Google Scholar]
  19. Penhoet E. E., Rutter W. J. Catalytic and immunochemical properties of homomeric and heteromeric combinations of aldolase subunits. J Biol Chem. 1971 Jan 25;246(2):318–323. [PubMed] [Google Scholar]
  20. Penhoet E., Kochman M., Valentine R., Rutter W. J. The subunit structure of mammalian fructose diphosphate aldolase. Biochemistry. 1967 Sep;6(9):2940–2949. doi: 10.1021/bi00861a039. [DOI] [PubMed] [Google Scholar]
  21. RACKER E. Enzymatic synthesis and breakdown of desoxyribose phosphate. J Biol Chem. 1952 May;196(1):347–365. [PubMed] [Google Scholar]
  22. RUTTER W. J. EVOLUTION OF ALDOLASE. Fed Proc. 1964 Nov-Dec;23:1248–1257. [PubMed] [Google Scholar]
  23. Rudolph R., Siebendritt R., Kiefhaber T. Reversible unfolding and refolding behavior of a monomeric aldolase from Staphylococcus aureus. Protein Sci. 1992 May;1(5):654–666. doi: 10.1002/pro.5560010511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sakakibara M., Mukai T., Hori K. Nucleotide sequence of a cDNA clone for human aldolase: a messenger RNA in the liver. Biochem Biophys Res Commun. 1985 Aug 30;131(1):413–420. doi: 10.1016/0006-291x(85)91818-2. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Swain M. S., Lebherz H. G. Hybridization between fructose diphosphate aldolase subunits derived from diverse biological systems: anomolous hybridization behavior of some aldolase subunit types. Arch Biochem Biophys. 1986 Jan;244(1):35–41. doi: 10.1016/0003-9861(86)90091-3. [DOI] [PubMed] [Google Scholar]
  27. Takasaki Y., Takahashi I., Mukai T., Hori K. Human aldolase A of a hemolytic anemia patient with Asp-128----Gly substitution: characteristics of an enzyme generated in E. coli transfected with the expression plasmid pHAAD128G. J Biochem. 1990 Aug;108(2):153–157. doi: 10.1093/oxfordjournals.jbchem.a123174. [DOI] [PubMed] [Google Scholar]
  28. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tolan D. R., Amsden A. B., Putney S. D., Urdea M. S., Penhoet E. E. The complete nucleotide sequence for rabbit muscle aldolase A messenger RNA. J Biol Chem. 1984 Jan 25;259(2):1127–1131. [PubMed] [Google Scholar]
  30. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES